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1. Advantages of DreaMo’s Skeleton Genera-
tion

Since predefined skeleton structure in methods like
RAC [4] and CASA [2] limits the output space to spe-
cific categories such as quadrupeds, we deliberately avoid
incorporating such skeleton priors in DreaMo. Specifi-
cally, DreaMo’s neural bones are randomly initialized and
learned without any predefined skeleton structure. The
human-interpretable skeleton is a valuable byproduct of
DreaMo, enabling users to articulate the reconstructed 3D
model easily. In contrast, BANMo [3] has neural bones
scattering in empty space or converging in less optimal re-
gions. It is hard to find bones correlated to animal parts and
unable to perform intuitive articulations. This limits the ap-
plication of BANMo to only retargeting motions from other
videos instead of directly articulating by users.

To assess the practical utility of the generated skeleton,
we further provide the rigging results in Figure 2 by plug-
ging DreaMo’s generated skeleton and the learned 3D shape
into the Blender auto-rigging tool. To build a skeleton with
a tree structure required by the rigging tool, we set a neu-
ral bone as a parent if it has more connected vertices than
nearby bones, with the count determined by the learned
skinning weights described in Section 3.4.

2. SDS Loss Optimization

As depicted in Figure 1, we tried several SDS strategies
to improve single-video 3D reconstruction: (i) only updat-
ing geometry-related parameters, (ii) updating all param-
eters, (iii) updating all parameters after geometry-related
parameters converged, and (iv) updating texture-related pa-
rameters after geometry-related parameters converged. We
observed that updating texture-related parameters hinders
texture development even after the geometry has converged.
Therefore, we make the SDS gradients only update the
geometry-relevant parameters as discussed in Section 3.2.

3. 3D Metric on PlanetZoo

We evaluate the 3D metric on the CASA PlanetZoo
dataset [2], which contains “synthetic” animal videos along
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Figure 1. Strategies for SDS loss optimization.

with ground-truth meshes for the reconstruction perfor-
mance evaluation. The Chamfer distance, for BANMo [3]
and DreaMo, are 0.40 and 0.35, respectively. The lower
Chamfer distance indicates the better reconstruction per-
formance. The results conclude DreaMo still outperforms
BANMo. Since PlanetZoo authors did not release the eval-
uation script, we use BANMo’s implementation (including
Iterative Closest Point), making the values not directly com-
parable to CASA.

4. Supplementary Video
Please watch the supplementary demo video for a com-

prehensive comparison between our method DreaMo and
the current state-of-the-art method BANMo [3]. The video
includes qualitative results for novel view synthesis, 3D
shape reconstruction, and novel pose articulation.

5. More Results for 3D Reconstruction
We provide more 3D reconstruction results in Figure 3 to

compare between BANMo [3] and our proposed DreaMo.
The figure shows that BANMo produces texture artifacts
and irregular shapes due to insufficient view coverage.
In contrast, benefiting from simultaneously reconstructing
training-view frames and hallucinating unobserved regions
of the target subjects, DreaMo generates more plausible ren-
dered images and convincing shapes.

6. More Results for Articulating 3D Model
In Figure 4, we provide more examples for controlling

DreaMo. Following the 3D model manipulation described
in Section 3.1, we manually control the generated skele-
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Figure 2. Utilizing DreaMo’s skeleton output for rigging. DreaMo’s skeleton can be used to rig the reconstructed 3D shape obtained
from a single Internet video.
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Figure 3. 3D reconstruction comparison among BANMo [3] and our DreaMo. We show rendered novel-view images, including RGB
and depth, and their corresponding reconstructed shapes for each method.
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Figure 4. Manipulating DreaMo by controlling the generated skeletons. We manually modify the bone positions and warp the associated
skin to manipulate the reconstructed model into new poses.
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Figure 5. Network architecture of DreaMo. We present the network design of the canonical implicit model (left), the blending models
(upper right), and the global transformation model (lower right). The warping models, which transform 3D coordinates between canonical
and observation spaces, integrate blending and global transformation models, as elaborated in Section 3.1.

ton and transform the skin points (i.e. vertices of the mesh)
to produce novel poses. With the accurately learned bone
placement, skinning weights, and 3D shapes from DreaMo,
the skin points can be reasonably transitioned in response to
the movement of the neural bones. This results in realistic
outcomes for novel poses.

7. Experimental Details

We conduct all the experiments on a single RTX 3090
GPU. Both DreaMo and BANMo are trained for 100
epochs, taking 2.5 and 1.7 hours, respectively. In addition,
the training of DreaMo utilizes 22 GB of GPU memory,
compared to BANMo which uses 13.5 GB. We represent
3D rotation using quaternions, implemented in PyTorch.



Figure 6. Our self-collected video dataset for diverse species and
insufficient view coverage from the Internet. We sample cropped
images from the dataset.

8. Implementation Details

8.1. Network Architecture

In Figure 5, we show the network architecture of the
canonical implicit model, the blending model, and the
global transformation model.

Similar to BANMo [3], we use MLPs for the canoni-
cal implicit model, where different frequencies for the po-
sitional embedding are employed to model the various de-
grees of change for density, appearance, and semantic fea-
tures. Following VolSDF [5], the SDF values can be con-
verted to density by the cumulative distribution function of
the Laplacian distribution.

The blending model transforms a given input coordinate
into the output coordinate based on the subject’s deforma-
tion, which the skinning weights and the transformation be-
tween the source and target bones can determine. Specifi-
cally, the skinning weights are calculated based on the Ma-
halanobis distance between the input coordinates and the
source neural bones. This distance is then negated and nor-
malized by a subsequent softmax layer. On the other hand,
the bone positions for each time step can be acquired using
frame-wise Fourier embedding [1, 3], followed by an MLP.

Finally, the global transformation, representing the cam-
era transformation, is obtained by feeding the frame-wise

Fourier embedding into the subsequent MLP.

8.2. 3D Shape Reconstruction

We perform two steps to reconstruct the subject’s shape
in a specific video frame. First, using marching cubes, we
extract the rest-pose mesh, which represents the 3D shape of
the reconstructed subject, from the neural implicit model in
canonical space. Afterward, we apply the forward warping
model to transform each vertex on the mesh to the observa-
tion space at the time step of the given video frame.

9. Dataset
We show the diverse species in the self-collected dataset

in Figure 6. It is important to note that the images in Fig-
ure 6 have been cropped just for visualization. This crop-
ping does not imply that the target subjects in the training
video are large and centered.

10. Limitations and Future Works
Despite DreaMo achieving exciting results, it remains a

special case of structure-from-motion methods, which in-
herently require a certain level of camera baseline and are
unable to handle videos with excessively low view cover-
age. Besides, accurately discovering the correct placement
of the neural bones and skinning weights requires a video
to demonstrate the movable parts with real-world motions,
thus DreaMo cannot hallucinate bones and articulations in
the completely invisible regions. We acknowledge these
limitations and aim to address them in future work.
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