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In this supplementary material, we provide further de-
tails regarding our baseline methods and datasets in Ap-
pendix A, definitions for our evaluation metrics and losses in
Appendix B, and further quantitative and qualitative results
in Appendix C and Appendix D respectively.

A. Implementation details

A.1. Baselines

We compare a variety of baseline methods for novel view
synthesis, depth estimation, and mesh reconstruction.
Nerfacto. We use the Nerfacto model from Nerfstu-
dio [45] version 1.0.2 in our experiments. We use default set-
tings, disable pose optimization, and predict normals using
the proposed method from Ref-NeRF [48]. We use rendered
normal and depth maps for Poisson surface reconstruction.
Depth-Nerfacto. We use the depth supervised variant
of Nerfacto with a direct loss on ray termination distribution
for sensor depth supervision as described in DS-NeRF [6].
Besides this, we use the same settings as for Nerfacto.
Neusfacto. We use default settings provided by
Neusfacto from SDFStudio [58] and use the default march-
ing cubes algorithm for meshing.
MonoSDF. We use the recommended settings from
MonoSDF [59] and with sensor depth and monocular normal
supervision. We set the sensor depth loss multiplier to 0.1
and normal loss multiplier to 0.05. Normal predictions are
obtained from Omnidata [7].
Splatfacto. The Splatfacto model from Nerfstudio
version 1.1.3 and gsplat [56] version 1.0.0 serves as our
baseline 3DGS model. This is a faithful re-implementation
of the original 3DGS work [19]. We keep all the default
settings for the baseline comparison.
SuGaR. We use the official SuGaR [11] source-code. The
original code-base, written as an extension to the original
3DGS work [19], supports only COLMAP based datasets
(that is, datasets containing a COLMAP database file). We
made slight modifications to the original source-code to
support non-COLMAP based formats to import camera in-
formation and poses directly from a pre-made .json files. We
use default settings for training as described in [11]. We use
the SDF trained variant in all experiments. We extract both

the coarse and refined meshes for evaluation, although the
difference in geometry metrics are small between them. We
found a small inconsistency in SuGaR’s normal directions
for outward facing indoor datasets, which we corrected in
our experiments.

In addition, we have modified the original source-code
to support depth rendering, which was not possible in the
original author’s code release. This is achieved by replacing
the CUDA backend with a variant that also includes depth
rendering support.

2DGS. We use the official 2DGS [16] source-code. Similar
to our SuGaR implementation, we made slight modifications
to the original source-code to support non-COLMAP based
formats to import camera information and poses directly
from a pre-made .json files. We use default settings for
training as described in [16] and the default meshing strategy
using TSDF fusion.

2DGS + LD̂ variant. We implement the proposed
depth regularization strategy into the official 2DGS code
release. Specifically, we enable supervision and gradient
flow to depths within the CUDA backend rasterizer and
supervise with sensor or monocular depth estimates. Our
overall optimization loss becomes L = Lrgb + λdLd where
λd is set to 0.2 and Lrgb is the original loss from [16].

A.2. Datasets

MuSHRoom. We use the official train and evaluation splits
from the MuSHRoom [37] dataset. We report evaluation
metrics on a) images obtained from uniformly sampling
every 10 frames from the training camera trajectory and b)
images obtained from a different camera trajecotry. We use
the globally optimized COLMAP [40] for both evaluation
sequences. We use a total of 5 million points for mesh
extraction for Poisson surface reconstruction.

ScanNet++. We use the ”b20a261fdf” and ”8b5caf3398”
scenes in our experiments. We use the iPhone sequences
with COLMAP registered poses. The sequences contain 358
and 705 registered images respectively. We uniformly load
every 5th frame from the sequences from which we reserve
every 10th frame for evaluation.
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Table 9. Depth Evaluation Metrics. We show definitions for our
depth evaluation metrics. dpred

i and dgt
i are predicted and ground-

truth depths for the i-th pixel. δ is the threshold factor (e.g., δ <
1.25, δ < 1.252, δ < 1.253).

B. Definitions for metrics and losses

B.1. Depth evaluation metrics

For the ScanNet++ and MuSHRoom datasets, we follow
[23,28,32,42,47,51,62] and report depth evaluation metrics,
defined in Table 9. We use the Absolute Relative Distance
(Abs Rel), Squared Relative Distance (Sq Rel), Root Mean
Squared Error RMSE and its logarithmic variant RMSE log,
and the Threshold Accuracy (δ < t) metrics. The Abs Rel
metric provides a measure of the average magnitude of the
relative error between the predicted depth values and the
ground truth depth values. Unlike the Abs Rel metric, the
Sq Rel considers the squared relative error between the pre-
dicted and ground truth depth values. The RMSE metric
calculates the square root of the average of the squared dif-
ferences between the predicted and the ground-truth values,
giving a measure of the magnitude of the error made by the
predictions. The RMSE log metric is similar to RMSE but
applied in the logarithmic domain, which can be particularly
useful for very large depth values. The Threshold accuracy
measures the percentage of predicted depth values within a
certain threshold factor, δ of the ground-truth depth values.

B.2. Mesh evaluation metrics

In Table 10 we provide the definitions for mesh evaluation
used throughout the text for comparing predicted and ground
truth meshes. We use a threshold of 5cm for precision, recall,
and F-scores. Furthermore, we evaluate mesh quality only
within the visibility of the training camera views.

B.3. Depth losses

For depth supervision, we compare the following variants
of loss functions defined in Table 11

We compare the performance of these losses as supervi-
sion in Table 15.
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Table 10. Mesh Evaluation Metrics. P and P ∗ are the point
clouds sampled from the predicted and the ground truth mesh. np

is the normal vector at point p.

Loss Definition
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2 + (1 − α)|I − Î|
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Table 11. Depth Regularization Objectives. We show the defini-
tions for various depth objectives. Here, δ = 0.2max(∥D− D̂∥1),
grgb = exp(−∇I), D/D̂ are the ground truth and rendered depths,
and I/Î is the ground truth/rendered RGB image.

C. Additional quantitative results

Here we provide additional quantitative results for DN-
Splatter. We provide a comparison of Poisson meshing strate-
gies, comparison of depth estimation quality with ground
truth Faro scanner data, as well as further ablations on depth
loss variants.

C.1. Mesh extraction techniques

We investigate various Poisson meshing techniques. In Ta-
ble 12, we demonstrate that extracting oriented point sets
from optimized depth and normal maps results in smoother
and more realistic reconstructions compared to other meth-
ods. We report mesh evaluation metrics for these different
techniques. We compare several approaches: directly using
trained Gaussian means and normals for Poisson meshing
(total of 512k Gaussians); extraction of surface density at
levels 0.1 and 0.5 by projecting rays from camera views and
querying scene intersections based on local density values,
as proposed in SuGaR [11]; and back-projection of opti-
mized depth and normal maps. All models were trained with
our depth and normal regularization. To ensure a fair com-
parison, we set the total number of extracted points to 500k
for both the surface density and back-projection methods.



Gaussians
Density
0.1

Density
0.5 Ours GT

Acc. ↓ Comp. ↓ C-L1 ↓ NC ↑ F-score ↑

Gaussians .0206 .0412 .0309 .9091 .9117
SuGaR [11]: density 0.1 .0130 .0357 .0243 .9301 .9275
SuGaR [11]: density 0.5 .0083 .0304 .0193 .9309 .9325
Back-projection (ours) .0074 .0312 .0194 .9428 .9310

Table 12. Ablation of Poisson mesh extraction techniques:
Replica. We compare naive Gaussian-based meshing, the meshing
strategy proposed in SuGaR [11], and our back-projection approach.
All models were trained using the proposed depth and normal ob-
jectives.

C.2. Depth estimation compared to Faro scanner
ground truth

In Table 13, we show the depth evaluation performance
of our proposed regularization scheme on the MuSHRoom
dataset, evaluated against ground truth Faro lidar scanner
data instead of the low-resolution iPhone depths. This cor-
responds to Table 3 from the main paper, which compares
depth metrics on iPhone depth captures for the same scenes
and baselines. When comparing to laser scanner depths, our
method still out performs other baseline methods on depth
estimation.

C.3. Additional depth comparisons

We consider the performance of DN-Splatter within
sparse view setting guided by only monocular depth esti-
mates. We test on the large scale Tanks & Temples scene
in Table 14. We consider training with dense and sparse
captures and conclude that although monocular depth super-
vision in dense captures provides minimal improvements,
the increase in novel view synthesis metrics under sparse
view settings is notable. Lastly, in Table 15 we compare the
performance of various depth losses described in Section B.3
on depth estimation and novel view synthesis. There are sev-
eral interesting observations. First, the logarithmic depth
loss LLogL1 outperforms other popular variants like LL1 or
LMSE on depth and RGB synthesis. Second, the gradient-
aware logarithmic depth variant LD̂ outperforms the sim-
pler variant, validating our assumption that captured sensor
depths, like those from iPhone cameras, tend to contain noise
and inaccuracies at edges or sharp boundaries. Therefore,
the gradient-aware variant mitigates these inaccurate sensor
readings.

RGB w/o Lsmooth w/ Lsmooth Omnidata GT

Figure 7. Qualitative comparison of normal smoothing prior.
We visualize normal estimates with and without our Lsmooth smooth-
ing prior on the ’VR Room’ scene from MuSHRoom dataset.

D. Additional qualitative results
D.1. Normal smoothing loss

We visualize the impact of Lsmooth prior on rendered nor-
mal estimates in Fig. 7. We achieve smoother predictions
with the prior.

D.2. 2DGS vs. DN-Splatter renders

In Fig. 8 we compare novel-view and depth estimation
renders using baseline Splatfacto and 2DGS models as well
as a variant of 2DGS with depth supervision enabled and our
method.

D.3. Mesh and NVS renders

Lastly, we provide additional qualitative results for mesh
performance in Fig. 9 as well as depth and novel view renders
in Fig. 10, Fig. 11, and Fig. 12, respectively.



(a) Test within a sequence (b) Test with a different sequence
Sensor Depth Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 12.5 ↑

Nerfacto [45] − 14.72 19.79 61.05 13.26 88.25 14.52 18.32 63.85 13.13 88.41
Depth-Nerfacto [45] ✓ 13.90 11.71 50.21 12.98 88.46 13.49 10.76 51.63 12.62 89.23
MonoSDF [59] ✓ 10.90 9.87 48.74 11.27 83.48 11.00 10.98 50.92 11.37 82.62
Splatfacto (no cues) [19] − 8.32 5.45 38.47 10.23 89.75 8.06 5.39 38.61 10.05 90.51

Splatfacto + LD̂ (Ours) ✓ 3.71 3.08 30.80 4.27 95.52 3.78 3.08 31.35 4.26 95.47
Splatfacto + LD̂ + LN̂ (Ours) ✓ 3.64 3.02 30.33 4.17 95.60 3.69 2.97 30.57 4.15 95.64

Table 13. Depth evaluation metrics compared to ground truth Faro scanner data for the MuSHRoom dataset. Instead of evaluating on
noisy captured iPhone depth maps for evaluation, we rely on more accurate depth maps reconstructed from a Faro lidar scanner. We show
that our depth regularization strategy, utilizing low-resolution iPhone depths, greatly outperforms other baselines. Results are averaged over
10 scenes.

(a) We load every 3/5/8/12 views from the whole training sequence (around 260). Results are evaluated on ”Courtroom” from Tanks & Temples.

Methods load every 3 load every 5 load every 8 load every 12
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Splatfacto 20.68 .7445 .1921 18.50 .6991 .2110 16.86 .6459 .2474 14.76 .5580 .3332
Ours + Zoe-Depth [3] 20.88 .7518 .1833 19.58 .7118 .2007 17.60 .6568 .2433 15.90 .5835 .2971
Ours + DepthAnything [53] 20.91 .7528 .1830 19.60 .7153 .1997 17.44 .6568 .2456 16.24 .5902 .2924

(b) We load every 5/8/12/20 views from the whole training sequence (around 270). Results are evaluated on ”8b5caf3398” from ScanNet++ DSLR sequence.

Methods load every 5 load every 8 load every 12 load every 20
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Splatfacto 24.68 .8810 .1169 22.81 .8568 .1559 21.08 .8357 .1816 18.90 .8059 .2375
Ours + Zoe-Depth [3] 24.72 .8821 .1163 23.04 .8591 .1521 21.81 .8415 .1755 19.10 .8059 .2332
Ours + DepthAnything [53] 24.66 .8826 .1194 23.21 .8595 .1507 21.76 .8406 .1751 19.51 .8101 .2321

Table 14. Comparison of DN-Splatter performance with monocular depth supervision. We ablate the Zoe-Depth [3] and DepthAnything
[53] monocular estimators with sparse views on the ”Courtroom” sequence of Tanks & Temples advanced dataset. Monocular depth
supervision aids in novel-view synthesis under sparse settings.

(a) Test split obtained by sampling uniformly every 10 frames within the training sequence.

Depth estimation Novel view synthesis
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ PSNR ↑ SSIM ↑ LPIPS ↓

LMSE .0587 .0229 .2313 .0618 .9534 22.32 .7995 .1653
L1 .0419 .0233 .2286 .0435 .9629 22.46 .8041 .1594
LDSSIML1 .0476 .0331 .2773 .0523 .9476 21.77 .7802 .1879
LLogL1 .0430 .0267 .2414 .0444 .9609 22.48 .8053 .1580
LHuberL1 .0536 .0239 .2335 .0561 .9579 22.39 .8017 .1625
LEAS .0954 .0572 .3581 .1103 .8726 22.18 .7951 .1780
LD̂ (Ours) .0338 .0212 .2170 .0350 .9691 22.49 .8031 .1630

(b) Test split obtained from a different camera trajectory with no overlap with the training sequence.

Depth estimation Novel view synthesis
Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSE log ↓ δ < 1.25 ↑ PSNR ↑ SSIM ↑ LPIPS ↓

LMSE .0572 .0282 .2506 .0570 .9585 19.37 .7088 .2329
L1 .0449 .0248 .2364 .0449 .9639 19.45 .7164 .2253
LDSSIML1 .0482 .0330 .2775 .0527 .9495 18.98 .7040 .2430
LLogL1 .0451 .0269 .2454 .0453 .9629 19.50 .7183 .2228
LHuberL1 .0526 .0267 .2483 .0533 .9617 19.45 .7128 .2285
LEAS .0724 .0442 .3142 .0819 .9329 19.30 .7108 .2351
LD̂ (Ours) .0427 .0252 .2335 .0420 .9632 19.53 .7187 .2286

Table 15. Ablation on depth losses on the MuSHRoom dataset. We consider various depth losses as defined in Appendix B.3 and their
impact on depth estimation and novel view synthesis. We achieve the best performance with our proposed edge-aware LD̂ loss.



iPhone RGB Splatfacto 2DGS 2DGS w/ Sensor Depth Ours w/ Sensor Depth

iPhone Depth Splatfacto 2DGS 2DGS w/ Sensor Depth Ours w/ Sensor Depth

iPhone RGB Splatfacto 2DGS 2DGS w/ Sensor Depth Ours w/ Sensor Depth

iPhone Depth Splatfacto 2DGS 2DGS w/ Sensor Depth Ours w/ Sensor Depth

Figure 8. Qualitative comparison between 2DGS and DN-Splatter. We supervise both 2DGS and our method with the LD̂ regularization
loss and visualize novel-view and depth renders from the ’Honka’ and ’Kokko’ scenes from the MuSHRoom dataset. We note that
DN-Splatter obtains higher metrics in both novel-view and mesh reconstruction metrics; whilst 2DGS obtains more smooth depth renders.



Nerfacto [45] Depth-Nerfacto [45] MonoSDF [59] Splatfacto [19, 45] Ours iPhone GT

Figure 9. Qualitative comparison on mesh reconstruction. Comparison of baseline methods on sequences from the MuSHRoom dataset.



PSNR: 23.30 PSNR: 21.02 PSNR: 24.46 PSNR: 26.56 PSNR: 27.32

PSNR: 18.31 PSNR: 17.22 PSNR: 19.50 PSNR: 22.35 PSNR: 23.10

PSNR: 19.01 PSNR: 18.60 PSNR: 19.17 PSNR: 18.86 PSNR: 21.48

Nerfacto [45] Depth-Nerfacto [45] MonoSDF [59] Splatfacto [19, 45] Ours iPhone GT

Figure 10. Qualitative comparison of rendered depth and RGB images. Comparison of baseline methods on the ”sauna” sequence from
the MuSHRoom dataset.



PSNR: 18.11 PSNR: 18.94 PSNR: 16.81 PSNR: 22.83 PSNR: 24.74

PSNR: 20.22 PSNR: 21.19 PSNR: 17.37 PSNR: 27.66 PSNR: 27.83

PSNR: 28.30 PSNR: 28.44 PSNR: 26.41 PSNR: 29.27 PSNR: 29.37

Nerfacto [45] Depth-Nerfacto [45] MonoSDF [59] Splatfacto [19, 45] Ours iPhone GT

Figure 11. Qualitative comparison of rendered depth and RGB images. Comparison of baseline methods on the ”classroom” and ”coffee
room” sequences from the MuSHRoom dataset.



PSNR: 23.52 PSNR: 23.62 PSNR: 22.03 PSNR: 24.83 PSNR: 25.59

PSNR: 20.16 PSNR: 21.06 PSNR: 21.46 PSNR: 24.18 PSNR: 26.08

PSNR: 18.15 PSNR:18.03 PSNR: 19.50 PSNR: 21.88 PSNR: 22.57

Nerfacto [45] Depth-Nerfacto [45] MonoSDF [59] Splatfacto [19, 45] Ours iPhone GT

Figure 12. Qualitative comparison of rendered depth and RGB images. Comparison of baseline methods on the ”koivu” sequence from
the MuSHRoom dataset.


