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A. Hyper-parameter tuning
We used a validation set of 10% and 17% of training

data for CIFAR10/100-LT and ImageNet-LT respectively.
For experiments on CIFAR10/100-LT, we empirically set
k = 7 to create the k-NN graphs with self-loops using
512-dimensional pre-trained embeddings. The pre-trained
model is trained for 100 epochs using SGD with Nesterov
momentum and a cosine learning rate, with batch size 256
following [13]. To update the BN statistics, BN layers are
fine-tuned for another 20 epochs with a learning rate of
0.001 using all the training data. GCN is trained for 200
epochs using the Adam optimizer with an initial learning
rate of 0.001 and a cosine annealing learning rate sched-
uler. For ImageNet-LT, k is set to 2 and pre-trained embed-
dings are 2048-dimensional. BN layers are fine-tuned for
20 epochs with a learning rate of 0.001. GCN is trained for
250 epochs using the Adam optimizer with an initial learn-
ing rate of 0.01 which is decayed by a factor of 10 at epoch
15 and 100. On all datasets, we set ω = 0.5 following [39].

B. Additional ablation studies
B.1. Sensitivity analysis on k and ω

As seen, given a meaningful feature space, our graph
combination can achieve a remarkable improvement, espe-
cially in terms of FPR95 and ACCtail. However, the im-
provement in tail-classes compensates for a slight decline
in ACChead. This compensation can be attributed to the in-
terplay between samples from tail-classes and the represen-
tative samples from head-classes. To provide a better ex-
planation, we observe the behaviour of head and tail classes
concerning the number of neighbor connections available
for each sample. By increasing the k in the k-NN graph,
we increase the number of edges in the overall graph. As
we can see in Fig. 4, the increase in k causes ACChead to
drop, while ACCtail continues to grow along with the overall
ACC. This suggests that too much neighborhood informa-
tion around head-samples is undesirable, leading to over-
smoothing of representative samples. In contrast, this ad-
ditional information benefits the tail-samples, resulting in a
much-improved ACCtail and a higher overall ACC.

We also conduct an ablation study on ω that controls the
importance of the OE loss term as summarized in Tab. 5.
The performance of our method is stable with respect to
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Figure 4. Variation of CIFAR10-LT ID classification accuracy
over selection of k in the k-NN graph.

Table 5. Ablation study on ω for CIFAR10-LT as ID. Average
values on all six Dtest

out are reported.

ω AUROC AUPR FPR95 ACC ACChead ACCtail

0.00 96.95 96.58 12.10 89.77 90.84 88.70
0.25 97.33 97.03 10.70 89.77 90.78 88.76
0.50 97.42 97.15 10.58 89.73 90.74 88.73
1.00 97.46 97.22 10.70 89.64 90.70 88.58

different ω values, showing a notable decrease only when ω

is set to 0.

B.2. Model architecture
In Tab. 3, we employ ResNet18 as the pre-trained back-

bone model, aligning with prior work [3, 39] that addresses
OOD detection in long-tailed recognition. In this section,
we demonstrate the versatility of our method across various
model architectures. Specifically, Fort et al. [7] suggested
that utilizing a pre-trained ViT can enhance OOD detection,
although they did not evaluate their method on long-tailed
IDs. We therefore replace pre-trained ResNet18 model with
a ViT-L 16 model pre-trained on ImageNet-1k [33] dataset.
We observed that for ViTs, it would be more helpful to fine-
tune the entire network before feature extraction. This re-
sults in even better performance (ViT-L 16+GCN in Tab. 6)
than the ResNet18 (ResNet18+GCN) underscoring the ef-
fectiveness of our method across diverse model architec-
tures.



Table 6. Ablation study on model architecture for CIFAR10-LT and CIFAR100-LT as ID. Average values on all six Dtest

out are reported. The
best results are shown in bold. Mean over six random runs are reported.

Din Method AUROC AUPR FPR95 ACC ACChead ACCtail

CIFAR10-LT

ResNet18 92.59 93.15 34.06 80.23 94.18 66.28
ResNet18+GCN 97.43 97.17 10.60 89.74 90.71 88.76

ViT-L 16 97.81 96.55 7.66 94.97 97.30 92.64
ViT-L 16+GCN 98.34 97.10 4.36 95.80 96.18 95.42

CIFAR100-LT

ResNet18 78.01 74.64 64.11 55.66 77.94 33.38
ResNet18+GCN 85.09 82.19 50.34 62.97 74.76 51.17

ViT-L 16 86.81 77.51 37.51 69.74 88.62 50.86
ViT-L 16+GCN 89.26 79.33 28.31 74.90 86.20 63.61

Table 7. Ablation study on batch-wise inference for CIFAR10-LT as ID. Average values on all six Dtest

out are reported. The best results are
shown in bold. Mean over six random runs are reported.

Batch Size AUROC AUPR FPR95 ACC ACChead ACCtail

512 95.96 95.84 16.43 83.19 87.87 78.50
1024 96.57 96.41 14.13 86.35 88.81 83.90
2048 96.86 96.66 13.01 87.58 89.37 85.80
4096 97.11 96.90 11.98 88.63 90.14 87.11
8192 97.25 96.97 11.29 89.15 90.40 87.90

All Samples 97.43 97.17 10.60 89.74 90.71 88.76

Table 8. Ablation study on batch-wise inference for CIFAR100-LT as ID. Average values on all six Dtest

out are reported. The best results are
shown in bold. Mean over six random runs are reported.

Batch Size AUROC AUPR FPR95 ACC ACChead ACCtail

512 69.15 67.49 77.66 32.90 48.13 17.68
1024 75.22 73.56 69.90 42.17 57.75 26.59
2048 79.81 77.79 62.14 50.45 65.33 35.56
4096 82.51 80.08 56.43 56.09 69.73 42.46
8192 83.84 81.21 53.30 59.42 71.94 46.90

All Samples 85.09 82.19 50.34 62.97 74.76 51.17

(a) MLP. (b) GCN.

Figure 5. Feature space representations obtained from the (a) MLP and (b) GCN models for CIFAR10-LT as ID test set and CIFAR-100 as
OOD test set using t-SNE. Equal number of test samples from each ID class are visualized. The GCN demonstrates distinct gaps between
the decision boundaries of ID and OOD samples compared to the MLP.



Table 9. Performance on CIFAR10-LT with all CIFAR10-related
classes removed from the pre-training dataset. Average values on
all six Dtest

out are reported.

Method AUROC AUPR FPR95 ACC ACChead ACCtail

cifar excluded 96.55 96.33 14.66 87.78 88.95 86.60
All 97.43 97.17 10.60 89.74 90.71 88.76

B.3. An alternative inference method
In our method, during inference, we construct a test

graph using all ID and OOD test samples. However, in prac-
tical scenarios, inference is typically performed on batches
of test samples which may belong to either ID or OOD. To
ensure compatibility with such practical scenarios, we con-
duct experiments by processing batches of test samples in-
stead of the full test data. In particular, for each randomly
selected batch of data, we generate the k-NN graph over
these data points alone to make the inference on that specific
batch. Results for CIFAR10-LT and CIFAR100-LT as ID
are indicated in Tab. 7 and Tab. 8, respectively. Results in-
dicate that our method exhibits stability in batch inference,
delivering nearly comparable performance to processing all
samples, particularly noticeable with larger batch sizes.

B.4. Effect of the pre-training dataset
To further examine the effect of the pre-training dataset,

similar to an ablation study of [13], we removed 153
CIFAR-10 related classes from Downsampled ImageNet
and reran the experiments for CIFAR10-LT. This further en-
sures the pre-trained model has not seen any tail-class or
super-class related instances. Results shown in Tab. 9 indi-
cate similar performance gains. As we can see, our method
still achieves SOTA (w.r.t. other baselines in Tab. 3) with
only a small degradation compared to the model that uses
all samples. This demonstrates that the pre-trained model
do not rely on seeing CIFAR-10 related samples, and that
simply training on more natural images increases the over-
all performance [13].

B.5. Graph structure
To further validate the importance of the graph struc-

ture, we replace the shallow linear classifier in the “Pre-
train+Gau.” baseline with a deeper Multi-Layer Percep-
tron (MLP) classifier. This MLP has an equivalent num-
ber of layers and trainable parameters as the GCN. Results
for CIFAR10-LT and CIFAR100-LT as ID are shown in
Tab. 10 and Tab. 11, respectively. As the MLP does not con-
sider any inter-sample relationships, the outcome demon-
strates lower performance for the “Pre-train+Gau.+MLP”
baseline compared to the combination with GCN (Pre-
train+Gau.+GCN). This observation is particularly evident
in terms of FPR95 and ACCtail.

Table 10. Ablation study on importance of GRL using a MLP for
CIFAR10-LT as ID. The best results are shown in bold. Mean over
six random runs are reported.

(a) OOD detection results.

Dtest
out

Method AUROC AUPR FPR95

Texture Pre-train+Gau.+MLP 99.12 98.54 3.21
Pre-train+Gau.+GCN 99.50 98.92 1.10

SVHN Pre-train+Gau.+MLP 99.35 99.73 2.61
Pre-train+Gau.+GCN 99.68 99.71 0.67

CIFAR100 Pre-train+Gau.+MLP 91.11 91.70 41.16
Pre-train+Gau.+GCN 92.08 92.21 35.28

TinyImageNet Pre-train+Gau.+MLP 94.40 92.93 28.66
Pre-train+Gau.+GCN 95.61 93.64 19.93

LSUN Pre-train+Gau.+MLP 98.85 98.84 4.87
Pre-train+Gau.+GCN 99.57 99.43 0.74

Places365 Pre-train+Gau.+MLP 97.55 99.17 14.86
Pre-train+Gau.+GCN 98.12 99.12 5.89

Average Pre-train+Gau.+MLP 96.73 96.82 15.90
Pre-train+Gau.+GCN 97.43 97.17 10.60

(b) ID classification results.

Method ACC ACChead ACCtail
Pre-train+Gau.+MLP 87.63 94.64 80.61
Pre-train+Gau.+GCN 89.74 90.71 88.76

Table 11. Ablation study on importance of GRL using a MLP for
CIFAR100-LT as ID. The best results are shown in bold. Mean
over six random runs are reported.

(a) OOD detection results.

Dtest
out

Method AUROC AUPR FPR95

Texture Pre-train+Gau.+MLP 90.95 84.76 39.54
Pre-train+Gau.+GCN 90.88 84.10 39.32

SVHN Pre-train+Gau.+MLP 95.20 97.51 18.89
Pre-train+Gau.+GCN 97.02 98.19 10.19

CIFAR10 Pre-train+Gau.+MLP 73.39 68.21 70.79
Pre-train+Gau.+GCN 75.08 74.17 70.62

TinyImageNet Pre-train+Gau.+MLP 79.19 67.42 65.46
Pre-train+Gau.+GCN 80.06 68.96 63.48

LSUN Pre-train+Gau.+MLP 81.03 72.32 68.22
Pre-train+Gau.+GCN 83.29 75.09 59.57

Places365 Pre-train+Gau.+MLP 83.21 92.05 60.41
Pre-train+Gau.+GCN 84.22 92.63 58.87

Average Pre-train+Gau.+MLP 83.83 80.38 53.88
Pre-train+Gau.+GCN 85.09 82.19 50.34

(b) ID classification results.

Method ACC ACChead ACCtail
Pre-train+Gau.+MLP 61.62 79.12 44.13
Pre-train+Gau.+GCN 62.97 74.76 51.17

This fact can be further clarified by examining the fea-
ture space representations from these two models, as de-
picted in Fig. 5. As seen, there are distinct gaps between
the decision boundaries of ID and OOD samples in the rep-
resentations obtained from the GCN (Fig. 5b) compared to
the MLP (Fig. 5a).



Table 12. Comparison of the training and inference speed (aver-
aged per-image) for CIFAR100-LT vs. CIFAR10 experiments on
an NVIDIA-A100 GPU. For our method, different k values (indi-
cated in brackets) are compared.

Method Train. time(s) Infer. time(ms)
OECC 715.57 0.27

EnergyOE 687.40 0.24
OE 690.09 0.11

PASCL 1265.63 0.13
BE-OE 706.87 0.24

EAT 3526.58 0.14
COCL 659.74 0.11

Pre-train+KNN 603.96 1.67

Ours
478.51 (k=3) 2.09 (k=3)
533.13 (k=7) 2.10 (k=7)
620.10 (k=10) 2.11 (k=10)

B.6. Computational cost

Tab. 12 compares the training and inference times of our
method with other baselines. For our method, the total train-
ing time includes the time taken for Gaussianization, graph
creation, and GCN training. Despite these components, the
overall training time remains shorter because we employed
a lightweight GCN model with only 578,860 parameters.
This is in contrast to most of the other methods, which
require 11,599,752 parameters to be trained from scratch.
However, similar to KNN method, inference takes slightly
longer than other methods due to the overhead introduced
by k nearest neighbour search and the graph creation pro-
cess. Notably, varying k values does not significantly im-
pact the inference speed.

B.7. Performance on balanced ID datasets

We also compare the performance of our method on bal-
anced ID datasets in Tab. 13. Note that some LTR baselines,
including PASCL, OS, EAT, and COCL (which we did not
include in the table), cannot be directly evaluated or reduced
to other baselines when there are zero tail-classes. For our
method, we used the same experimental settings as in the
LT experiments, except that the imbalance ratio ε was set
to 1. As shown, our method outperforms most baselines for
OOD detection across all metrics while demonstrating com-
parable performance in ID classification accuracy. There
is a small effect of reduction of ID accuracy, when using
higher k values, which result in larger number of neighbors
around ID nodes in the graph. However, the inter-sample
relationships between nodes greatly benefit the OOD detec-
tion. This is part of the trade-off between leveraging use-
ful relational information and the risk of over-smoothing, a
common issue inherent to many graph-based approaches.

Table 13. OOD detection results and ID classification results for
balanced CIFAR-10 and CIFAR-100 as ID. Average values on all
six Dtest

out are reported. The best results are bolded. Mean over six
random runs are reported.

Din Method AUROC AUPR FPR95 ACC

CIFAR-10

OECC 96.33 95.38 14.36 91.57
EnergyOE 96.77 96.72 14.82 93.30

OE 96.67 95.97 13.80 93.64
BE-OE 96.83 96.70 14.51 93.00

Pre-train+KNN 94.82 94.03 26.36 95.91
Ours 97.84 97.66 8.86 91.40

CIFAR-100

OECC 84.03 77.94 45.26 69.55
EnergyOE 85.84 80.99 43.02 74.95

OE 83.92 78.07 49.49 71.36
BE-OE 85.85 80.91 42.93 74.83

Pre-train+KNN 85.52 80.71 55.56 79.82
Ours 87.17 83.91 43.62 70.37

B.8. Detailed ablation results
In Table 4, we presented an ablation study over various

components of our proposed approach. Due to space limi-
tations, we omitted the detailed results over separate OOD
data. Detailed ablation study results over separate Dtest

out
for

CIFAR10-LT and CIFAR100-LT are shown in Tab. 14 and
Tab. 15, respectively.

C. More details on Gaussianization
Regularization and normalization techniques are com-

monly applied to neural networks to ensure stable training
and improved generalization performance [17, 19]. Among
various normalization methods for controlling hidden ac-
tivations, Gaussianization ensures that the activation layer
representations follow a standard normal distribution. This
approach relies on batch normalization (BN) layers, which
take hidden activations as input to the next layer and nor-
malize them to have zero mean and unit variance. Dur-
ing inference, the network uses ‘running statistics’ (running
mean-µrunning and running variance-ϑrunning ) that are com-
puted and updated during training to normalize activations,
i.e.,

x̂i =
xi → µrunning√
ϑ
2

running + ϖ

,

where xi denotes the current data input and ϖ is a small
constant added for numerical stability. In our pipeline, we
used a backbone model f pre-trained on a different dataset
(Dpretrain) to extract initial feature representations for each
training input. However, when calculating these feature rep-
resentations, the running statistics from Dpretrain are used,
which differ from those of the current training data (Dtrain).
This results in a misalignment of the activations from the



intended standard normal distribution during inference on
Dtrain. To correct this, we need to fine-tune the BN lay-
ers of the backbone f on our training data Dtrain, while
keeping all other layers fixed. This fine-tuning will update
the µrunning and ϑrunning to reflect the distribution of Dtrain,
aligning the activations with the intended standard normal-
ization.

D. Limitations
A common limitation of our method can be that com-

putational overhead introduced by graph creation (Ap-
pendix B.6). Future work could explore other graph-based
approaches, such as GraphSAGE [10], which use neigh-
borhood sampling to reduce computational costs. On the
other hand, there is a trade-off between leveraging useful
relational information by means of message passing and the
risk of over-smoothing, which is a common issue in many
graph-based approaches. We leave it to future work to intro-
duce edge-weighted mechanisms and graph sampling tech-
niques to address these potential limitations.

E. Code
Code to reproduce the results of our method is available

at https://github.com/hdnugit/Graph_OOD_
LTR.

https://github.com/hdnugit/Graph_OOD_LTR
https://github.com/hdnugit/Graph_OOD_LTR


Table 14. Ablation study for separate Dtest

out for CIFAR10-LT as ID. The best and second-best results are bolded and underlined, respectively.
Mean over six random runs are reported.

Dtest

out

Pre-
train Gau. GRL Method AUROC AUPR FPR95

Texture

✁ ✁ ✁ Scratch (OE) 92.59 83.32 25.10
✁ ✁ ✂ Scratch+GCN 86.34 69.51 32.64
✂ ✁ ✁ Pre-train 94.42 90.58 26.77
✂ ✁ ✂ Pre-train+GCN 99.16 98.53 2.10
✂ ✂ ✁ Pre-train+Gau. 96.58 94.49 19.23
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 99.50 98.92 1.10

SVHN

✁ ✁ ✁ Scratch (OE) 95.10 97.14 16.15
✁ ✁ ✂ Scratch+GCN 87.67 91.66 32.16
✂ ✁ ✁ Pre-train 97.00 98.71 15.64
✂ ✁ ✂ Pre-train+GCN 99.44 99.63 1.72
✂ ✂ ✁ Pre-train+Gau. 96.17 98.30 18.54
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 99.68 99.71 0.67

CIFAR100

✁ ✁ ✁ Scratch (OE) 83.40 80.93 56.96
✁ ✁ ✂ Scratch+GCN 79.55 73.12 56.27
✂ ✁ ✁ Pre-train 84.13 83.90 57.24
✂ ✁ ✂ Pre-train+GCN 88.87 88.38 44.18
✂ ✂ ✁ Pre-train+Gau. 85.92 86.48 55.13
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 92.08 92.21 35.28

TinyImageNet

✁ ✁ ✁ Scratch (OE) 86.14 79.33 47.78
✁ ✁ ✂ Scratch+GCN 81.75 70.13 44.80
✂ ✁ ✁ Pre-train 88.21 85.00 46.27
✂ ✁ ✂ Pre-train+GCN 93.38 90.34 26.22
✂ ✂ ✁ Pre-train+Gau. 90.20 88.02 42.69
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 95.61 93.64 19.93

LSUN

✁ ✁ ✁ Scratch (OE) 91.35 87.62 27.86
✁ ✁ ✂ Scratch+GCN 86.08 79.82 33.54
✂ ✁ ✁ Pre-train 93.26 92.88 31.92
✂ ✁ ✂ Pre-train+GCN 99.38 99.37 1.88
✂ ✂ ✁ Pre-train+Gau. 94.30 94.40 30.40
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 99.57 99.43 0.74

Places365

✁ ✁ ✁ Scratch (OE) 90.07 95.15 34.04
✁ ✁ ✂ Scratch+GCN 84.09 90.98 35.92
✂ ✁ ✁ Pre-train 91.18 96.66 40.32
✂ ✁ ✂ Pre-train+GCN 97.76 99.09 9.55
✂ ✂ ✁ Pre-train+Gau. 92.37 97.25 38.36
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 98.12 99.12 5.89

Average

✁ ✁ ✁ Scratch (OE) 89.77 87.25 34.65
✁ ✁ ✂ Scratch+GCN 84.25 79.20 39.22
✂ ✁ ✁ Pre-train 91.37 91.29 36.36
✂ ✁ ✂ Pre-train+GCN 96.33 95.89 14.28
✂ ✂ ✁ Pre-train+Gau. 92.59 93.15 34.06
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 97.43 97.17 10.60



Table 15. Ablation study for separate Dtest

out for CIFAR100-LT as ID. The best and second-best results are bolded and underlined, respec-
tively. Mean over six random runs are reported.

Dtest

out

Pre-
train Gau. GRL Method AUROC AUPR FPR95

Texture

✁ ✁ ✁ Scratch (OE) 76.71 58.79 68.28
✁ ✁ ✂ Scratch+GCN 78.70 56.03 62.57
✂ ✁ ✁ Pre-train 77.39 62.69 65.45
✂ ✁ ✂ Pre-train+GCN 88.70 81.86 46.35
✂ ✂ ✁ Pre-train+Gau. 83.79 72.87 54.47
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 90.88 84.10 39.32

SVHN

✁ ✁ ✁ Scratch (OE) 77.61 86.82 58.04
✁ ✁ ✂ Scratch+GCN 79.04 85.16 62.77
✂ ✁ ✁ Pre-train 83.80 91.15 49.25
✂ ✁ ✂ Pre-train+GCN 89.42 93.85 34.56
✂ ✂ ✁ Pre-train+Gau. 91.65 95.90 33.24
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 97.02 98.19 10.19

CIFAR10

✁ ✁ ✁ Scratch (OE) 62.23 57.57 80.64
✁ ✁ ✂ Scratch+GCN 64.98 59.53 78.15
✂ ✁ ✁ Pre-train 64.02 60.22 80.23
✂ ✁ ✂ Pre-train+GCN 72.80 68.96 71.20
✂ ✂ ✁ Pre-train+Gau. 68.99 66.00 77.65
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 75.08 74.17 70.62

TinyImageNet

✁ ✁ ✁ Scratch (OE) 68.04 51.66 76.66
✁ ✁ ✂ Scratch+GCN 68.37 51.73 77.60
✂ ✁ ✁ Pre-train 71.47 56.95 74.29
✂ ✁ ✂ Pre-train+GCN 75.73 62.25 69.33
✂ ✂ ✁ Pre-train+Gau. 74.70 61.74 70.48
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 80.06 68.96 63.48

LSUN

✁ ✁ ✁ Scratch (OE) 77.10 61.42 63.98
✁ ✁ ✂ Scratch+GCN 76.26 57.55 65.52
✂ ✁ ✁ Pre-train 65.18 53.89 81.17
✂ ✁ ✂ Pre-train+GCN 79.14 69.66 69.21
✂ ✂ ✁ Pre-train+Gau. 72.06 62.26 77.96
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 83.29 75.09 59.57

Places365

✁ ✁ ✁ Scratch (OE) 75.80 86.68 65.72
✁ ✁ ✂ Scratch+GCN 76.26 85.78 64.88
✂ ✁ ✁ Pre-train 71.18 85.69 77.00
✂ ✁ ✂ Pre-train+GCN 82.57 91.73 62.65
✂ ✂ ✁ Pre-train+Gau. 76.89 89.04 70.86
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 84.22 92.63 58.87

Average

✁ ✁ ✁ Scratch (OE) 72.91 67.16 68.89
✁ ✁ ✂ Scratch+GCN 73.93 65.97 68.58
✂ ✁ ✁ Pre-train 72.17 68.43 71.23
✂ ✁ ✂ Pre-train+GCN 81.40 78.05 58.88
✂ ✂ ✁ Pre-train+Gau. 78.01 74.64 64.11
✂ ✂ ✂ Pre-train+Gau.+GCN (ours) 85.09 82.19 50.34


