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1. ClipCross Implementation Details

We employed 38 predefined sentence suffixes for Ωpre

in conjunction with 15 predefined prefixes, as elaborated

in Section 2. The quantity of optimized embedding vec-

tors in Ωz was optimized and set to 13, as elucidated in

Section 3. Five token vectors were used to represent each

suffix, with a token vector size of 512. Both the CLIP im-

age and text embedding vectors had a size of 512. We em-

ployed CLIP version OpenAI ViT-B/32, Adam optimizer

with learning rate of 0.01, a batch size of 1024, loss weight

factor λ = 0.013, and ϵ = 0.35 in the similarity loss. The

input images had a frame rate of 30 frames per second. Each

image was cropped around the pedestrian’s bounding box,

with the crop size 15 times larger than the bounding box.

The pedestrian-centric CLIP image embedding per frame

was obtained by reducing the attention weights outside the

pedestrian’s bounding box by a factor of 0.1 in the last at-

tention layer of the CLS token in the CLIP image encoder.

The temporal combination, resulting in vector x, used a se-

quence of 15 frames of CLIP image embeddings spanning

0.5 seconds, summed with learnable scale factors ρ1, .., ρ15.

The MLP that processes the cross-model feature vector η

consists of two layers and produces two outputs, represent-

ing the probabilities of each class. A leaky ReLU activation

function was applied to the output of the first layer, followed

by a softmax operation on the output of the second layer.

2. Predefined Embedding - Ωpre

Table 1 showcases the 38 predefined suffixes that were

used to generate the 38 embedding vectors in Ωpre. These

suffixes comprise human descriptions of positive and nega-

tive crossing intentions characteristics. The text embedding

vectors within Ωpre were derived by averaging the embed-

ding vectors produced using each suffix listed in Table 1

alongside various prefixes, as outlined in Equation 1 of the

main paper. The list of utilized prefixes is provided in Table
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2, which is sourced from the recommended prefixes in the

official OpenAI git repository.

Subsequently, we assess how the choice of the number of

predefined suffixes and prefixes, used to generate Ωpre, im-

pacts the performance of ClipCross. Figs. 1 and 2 display

accuracy metrics on PIE dataset vs. the number of randomly

selected predefined prefixes and suffixes from Tables 1,2.

The solid lines represent the average results across ten dif-

ferent runs, while the line width represents variance. These

figures illustrate that, as the number of predefined suffixes

and prefixes increases, the average accuracy improves until

it reaches saturation, coupled with a reduction in variance.

In this paper, we used 38 suffixes and 15 prefixes. Figs. 1

and 2 indicate that further increasing these numbers results

in negligible performance improvement.

3. Insight on Optimized Embedding - Ωz

In this section, we evaluate the effect of the selection of

the number optimized text emebdding vectors, Ωz , on the

performance of ClipCross, and how the optimized embed-

dings are related to the predefined embedding vectors Ωpre.

Fig. 3 shows accuracy metrics as a function of the num-

ber of optimized embedding vectors. It reveals that optimal

performance is achieved at around 13 embedding vectors,

as employed in the paper.

The text emebdding optimization process in ClipCross

can be interpreted as pulling each optimized embedding in

Ωz towards an embedding of a predefined sentence in Ωpre

and further refining it. We identify the associated embed-

ding vector in Ωpre for each optimized embedding vector in

Ωz by choosing the vector with the highest cosine similarity.

In the second column of Table 1, you can see the number of

vectors in Ωz linked to each suffix vector in Ωpre. The table

reveals that the optimization process yielded a reasonably

diverse association between the optimized embeddings and

the predefined sentences. The 13 optimized embeddings in

Ωz were linked to nine distinct sentences in Ωpre. Addition-

ally, the first two predefined sentences in Table 1 were each

transformed into three refined variations.
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Index Suffix # associated vectors from Ωz

1 away from the road. 3

2 off the road. 3

3 facing a building. 1

4 leaning against a light post. 1

5 sitting on a bench near the sidewalk. 1

6 entering a car. 1

7 walking across a zebra crossing. 1

8 observing a storefront. 1

9 using a crosswalk to cross. 1

10 remaining on the sidewalk. 0

11 staying on the sidewalk. 0

12 along the sidewalk. 0

13 dashing across the street 0

14 sitting next to the road. 0

15 along the side of the road. 0

16 walking parallel to the street. 0

17 crossing a bridge over the road. 0

18 pausing at a street corner. 0

19 crossing the road. 0

20 jaywalking. 0

21 crossing legally. 0

22 stepping onto the street. 0

23 crossing the street at a pedestrian signal. 0

24 navigating through an intersection. 0

25 walking through a pedestrian tunnel under the road. 0

26 intending to cross the road. 0

27 about to cross the road. 0

28 planning to cross the road. 0

29 waiting for green traffic light. 0

30 looking both ways before crossing. 0

31 positioning oneself near a crosswalk. 0

32 checking for oncoming traffic. 0

33 hesitating before crossing. 0

34 walking towards a crosswalk. 0

35 approaching an intersection. 0

36 waiting for a break in traffic. 0

37 signaling their intention to cross. 0

38 preparing to step off the curb. 0

Table 1. List of suffixes used to generate Ωpre and the count of associated optimized text embeddings per suffix.

In Section 4 of the main paper, we conducted an ablation

study to evaluate ClipSimMin, a variant of ClipCross that

substitutes the similarity loss in Equation 3 of the main pa-

per with the minimum cosine distance between the vector in

Ωz and any vector in Ωpre. With ClipSimMin, we noticed

that eight vectors in Ωz were linked to the first suffix in Ta-

ble 1, while five vectors were linked to the second suffix.

This suggests that the use of the similarity loss in ClipCross

results in a greater disparity among the optimized vectors in

Ωz compared to ClipSimMin. As shown in Table 4 in the

main paper, this variation leads to enhanced performance.

4. PIE, PSI and JAAD Datasets

We evaluated ClipCross using three publicly available

datasets: PIE [3], PSI [1] and JAAD [4]. PIE dataset con-

sists of 6 hours of urban street camera footage captured at

30 fps. Each sequence is 2 seconds long, with 0.6 sec-

onds overlap, and 15 human annotators rated whether the

pedestrian intended to cross on a 5-point scale. The rat-

ings were aggregated, and a threshold of 0.5 was used to

determine the ground truth label. The PIE training set con-

tains 1020 non-crossing and 1674 crossing intention cases,



Figure 1. Performance dependence on the number of prefixes.

Figure 2. Performance dependence on the number of suffixes.

Figure 3. Performance dependence on the number of optimized

sentences.

while the test set contains 414 non-crossing and 1386 cross-

ing intention cases. In the PSI dataset, video footage was

captured while driving in urban settings at a frame rate of

30 fps. Sequences of 0.5 seconds were extracted from 110

video clips with an overlap ratio of 0.8 and annotated by

Prefix

a photo of a person

a video of a person

an example of person

a photo of the person

a video of the person

an example of the person

a demonstration of the person

a photo of a person during

a video of a person during

an example of a person during

a demonstration of a person during

a photo of the person during

a video of the person during

an example of the person during

a demonstration of the person

Table 2. List of prefixes

24 human drivers to determine whether the pedestrian in-

tended to cross or not. We used a threshold of 0.5 to ob-

tain the ground truth label. The train set includes 2100

examples of non-crossing intentions and 3941 examples of

crossing intentions, while the test set has 807 examples of

non-crossing intentions and 1975 examples of crossing in-

tentions. The JAAD dataset consists of video footage cap-

tured at a frame rate of 30 fps, featuring pedestrians in ur-

ban environments from various countries. Our evaluation

employed the JAADall version [2], encompassing 686 sce-

narios depicting positive crossing intentions of pedestrians

either crossing or about to cross, along with 2100 scenar-

ios depicting instances where pedestrians were far from the

road without any intention to cross. The division into train-

ing and testing sets was conducted in accordance with the

methodology outlined in [2].

5. Evaluation Metrics Details

In this section, we outline the exact calculations of the

evaluation metrics utilized in the paper. We initiate by in-

troducing the definitions of the following core classification

outcomes:

• True Positives (TP): The number of positive instances

correctly classified as positive.

• False Positives (FP): The number of negative in-

stances incorrectly classified as positive.

• True Negatives (TN): The number of negative in-

stances correctly classified as negative.

• False Negatives (FN): The number of positive in-

stances incorrectly classified as negative.



The datasets PIE, JAAD and PSI, used for evaluating the

performance in this paper, exhibit imbalanced class distri-

butions. This imbalance introduces a significant bias in the

accuracy metric when only one class is considered. To mit-

igate this bias, we calculate accuracy metrics separately for

each class and utilize a balanced accuracy metric, along

with balanced F1 and the Matthews Correlation Coefficient

(MCC). By applying the aforementioned definitions, we

computed the subsequent classification metrics:

• Class 0 accuracy: The proportion of correctly classi-

fied negative instances, calculated as

Acc0 =
TN

TN + FP
. (1)

• Class 1 accuracy: The proportion of correctly classi-

fied positive instances, calculated as

Acc1 =
TP

TP + FN
. (2)

• Accuracy of both classes: The ratio of correctly clas-

sified positive and negative instances to all instances,

calculated as

Acc =
TP + TN

TP + FN + TN + FP
. (3)

• Balanced accuracy: The average of Class 0 and Class

1 accuracies, calculated as

BAcc =
Acc0 +Acc1

2
. (4)

• F1 score of Class 0: The harmonic mean of precision

and recall for Class 0, calculated as

F10 = 2 ·
Precision0 ·Recall0

Precision0 +Recall0
, (5)

where Precision0 = TN
TN+FN

and Recall0 =

TN
TN+FP

.

• F1 score of Class 1: The harmonic mean of precision

and recall for Class 1, calculated as

F11 = 2 ·
Precision1 ·Recall1

Precision1 +Recall1
, (6)

where Precision1 = TP
TP+FP

and Recall1 =

TP
TP+FN

.

• Balanced F1 score: The average of F1 scores for

Class 0 and Class 1, calculated as

BF1 =
F10 + F11

2
. (7)

• Matthews Correlation Coefficient (MCC): A metric

that provides a balanced measure of classification per-

formance for imbalanced datasets. MCC is calculated

using the formula:

MCC =

β
√

Precision1 ·Recall1 · Precision0 ·Recall0
(8)

where

β =
TP · TN − FP · FN

TP · TN
. (9)

The MCC ranges from -1 to 1, where -1 indicates com-

plete disagreement between predictions and true la-

bels, 0 signifies performance no better than random

chance, and 1 represents perfect agreement. Due to

its consideration of all four components of the confu-

sion matrix (TP, TN, FP, and FN), MCC is particularly

suitable for imbalanced datasets.

• AUC: The area under the precision recall curve. The

precision and recall refer to Precision1, and Recall1,

respectively, which are defined above. These values

are computed at different thresholds on the crossing

intention classification score that determine positive

crossing intention.
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