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1. Video Qualitative results
We direct the readers to this link to see qualitative com-

parisons in terms of videos of ReBotNet with other meth-
ods. In Figures 1 and 2, we provide more qualitative results
on PortraitVideo and FullVideo datasets respectively.

2. Experiments leading to our design choice:
We experimented with ConvNets, ConvNexts, Trans-

formers, and Mixers individually before finalizing our de-
sign choice—ReBotNet. These experiments yielded ana-
lytical insights crucial in shaping our decision.” FastDVD-
Net and BasicVSR++ represent purely convolutional meth-
ods, whereas VRT and RVRT utilize transformer-based ap-
proaches with transposed convolution layers in their de-
coders. Despite their unique design improvements aimed
at enhancing performance, these methods share a common
encoder-decoder architecture, typical of most restoration
techniques. To comprehend the advantages of encoder de-
sign, we conduct an experimental setup altering the encoder
design while maintaining a fixed decoder with simple trans-
posed convolution layers. Our objective is to match the
performance of these models, aiming to gauge the compu-
tational requirements needed to achieve equivalent perfor-
mance among these diverse encoders. The performance in
terms of PSNR on the Portrait Video dataset and the latency
of each of these models in terms of ms is reported in the
table 14 below:

Table 1. Experiments with different encoders on PortraitVideo
dataset.

Encoder Latency (in ms) PSNR
ConvNet 86.89 31.24
ConvNext 30.56 31.22

Transformer 140.58 31.25
Mixer 28.65 31.23

We can observe that while Transformers take more infer-
ence time and complexity to match ConvNet’s performance

*Parts of the work was done during an internship at Google.

while both ConvNext and Mixers are more efficient than
their predecessors.

After considering these insights, our focus shifted to-
wards leveraging the strengths of both ConvNext and Mixer.
Combining a convolutional encoder for initial feature ex-
traction with a mixer network in the bottleneck has demon-
strated effectiveness. Convolutional layers excel in effi-
cient low-level feature extraction, while mixers, following
transformers, showcase strong representative abilities in ex-
tracting deep features, as also highlighted in Srinivas et al.
(2021). We performed experiments where we slowly in-
troduce Mixer in the bottleneck of ConvNext which can be
seen in the following table 15 where the PSNR is reported
on PortraitVideo dataset:

Table 2. Experiments on PortraitVideo dataset with difference
configurations of ConvNext and Mixer at different encoder blocks.

ConvNext Mixer Latency (in ms) PSNR
1,2,3,4,5 - 30.56 31.24

1,2,3 4,5 **15.58** 31.25
1,2 3,4,5 18.79 31.25
1 2,3,4,5 26.77 31.23
- 1,2,3,4,5 28.65 31.23

4,5 1,2,3 36.85 31.25

This illustrates our empirical journey towards the core
design element of ReBotNet—a convolutional feature ex-
tractor followed by a mixer bottleneck. Notably, the last row
presents an alternative configuration with early mixer layers
and bottleneck ConvNext layers, resulting in sub-optimal
performance. These analytical experiments were pivotal in
finalizing the design choice of ReBotNet.

3. Configurations of ReBotNet

In the main paper, we mentioned we conducted exper-
iments with different FLOPs regimes for all the methods.
We did that by controlling the depth of the bottleneck and
the embedding dimension of different methods to get the
required FLOPs. In Tables 3, 4, and 5 we provide the ex-
act configurations of ReBotNet - S,M, and L respectively.
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Figure 1. Qualitative Results on PortraitVideo dataset. Please zoom in for better visualization.
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Figure 2. Qualitative Results on FullVideo dataset. Please zoom in for better visualization.

More analysis on the dependence of these parameters were
provided in the main paper.

4. Configuration of Baselines

We used the publicly available codes for the original
implementations of FastDVDNet, BasicVSR++, VRT, and
RVRT; the results of which can be seen in Table 1 of the
main paper. For the S,M and L configurations we use the
same configurations of the original implementations but

change the embedding dimensions. These changes have
been illustrated in Tables 6, 7, and 8. OG means the original
implementation. Note that RVRT does not have a S config-
uration as even with embedding dimensions of [1, 1, 1], the
FLOPs does not hit the range of 10 GFLOPs.

5. Experiments on Pure Mixers

We observed that MLP-Mixers tend to exhibit a notice-
able decline in quality when applied directly for video en-



Table 3. Configuration of ReBotNet-S.

Block Type Value

Branch I
Number of Layers 4
Depths per layer [4,4,4,4]

Embedding dimensions [28,36,48,64]

Branch II Patch size 1
Embedding Dimension 256

Bottleneck
Depth 4

Input Dimension 64
Hidden Dimension 728

Table 4. Configuration of ReBotNet-M.

Block Type Value

Branch I
Number of Layers 4
Depths per layer [4,4,4,4]

Embedding dimensions [64,80,108,116]

Branch II Patch size 1
Embedding Dimension 256

Bottleneck
Depth 4

Input Dimension 116
Hidden Dimension 728

Table 5. Configuration of ReBotNet-L.

Block Type Value

Branch I
Number of Layers 4
Depths per layer [5,5,5,4]

Embedding dimensions [172,180,188,196]

Branch II Patch size 1
Embedding Dimension 256

Bottleneck
Depth 4

Input Dimension 64
Hidden Dimension 728

Table 6. Configurations of VRT.

Method Embedding Dimension
VRT - S [24,24,24,24,24,24,24,24,24,24]
VRT - M [48,48,48,48,48,48,48,48,48,48]
VRT - L [180,180,180,180,180,180,120,120,120,120]

VRT - OG [180,180,180,180,180,180,120,120,120,120,120,120,120]

Table 7. Configurations of RVRT.

Method Embedding Dimension
RVRT - S -
RVRT - M [36,36,36]
RVRT - L [192,192,192]

RVRT - OG [192,192,192]

hancement compared to transformer-based approaches. Us-
ing Mixers directly on large size images still takes a lot of
compute and makes it difficult to achieve real-time speed.

Table 8. Configurations of FastDVDNet.

Method Embedding Dimension
FastDVDNet - S [32, 48, 72, 96]
FastDVDNet - M [64, 80, 108, 116]
FastDVDNet - L [96, 112, 132, 144]

FastDVDNet - OG [80, 96, 132, 144]

In Table 9, we conduct an experiment where we take VRT
as the base network and convert all the transformer blocks
in it to MLP-Mixers. The experiment is conducted on the
DVD dataset. It can be observed that the although the com-
putation reduces, the performance also drops significantly.
And still the computation is far away from obtaining a real-
time FPS. This motivates us to work towards our design of
ReBotNet as seen in the main paper.

Table 9. Experiment on pure mixers.

Method PSNR SSIM GFLOPs FPS
VRT 34.24 0.9651 2054.32 1

VRT (Mixers) 32.14 0.9429 1495.06 2

6. Degradations

In Table 10, we provide the detailed configurations of
degradations that we use in PortraitVideo and FullVideo
dataset. In all the rows where there is a range, we choose
a random value in the range. To get the final degradation
of a sample image at hand, we choose a random combina-
tion of the degradations from Table 10. These values were
decided to emulate degradations possible in real-world and
after consulting experts working in the field of video con-
ferencing.

Table 10. Degradations used in PortraitVideo and FullVideo
datasets.

Type of Degradation Value
Eye Enlarge ratio 1.4
Blur kernel size 15

Kernel Isotropic Probability 0.5
Blur Sigma [0.1,3]

Downsampling range [0.8,2.5]
Noise amplitude [0,0.1]

Compression Quality [70,100]
Brightness [0.8,1.1]
Contrast [0.8,1.1]

Saturation [0.8,1.1]
Hue [-0.05,0.05]



7. Temporal Consistency
We would like to note that quantitatively evaluating tem-

poral consistency is an actively researched field. With that
being said, we report the difference in SSIM between con-
secutive frames to quantitatively evaluate the temporal con-
sistency. The following table 17 is the mean SSIM differ-
ence across consecutive frames for all videos in the Por-
trait Video dataset. Differences in SSIM can give us details
about how smooth the transitions are temporally where low
difference means temporally consistent cases. It can be seen
that the SSIM difference is less for the configuration includ-
ing temporal branch proving the usefulness of our method.

Table 11. SSIM difference reported to understand the temporal
consistency aspect of the introduced temporal branch.

Config SSIM Difference
Ground Truth 0.104

Without Temp. Branch 0.158
With Temp. Branch 0.124

8. Limitations
i) While we do obtain real-time performance, there is

still room of improvement in terms of performance to reach
more pleasing results as visually one can still see a differ-
ence when we compare with high resolution ground truth.
ii) There is potential to further increase the training data
size to make sure the model works directly off-the-shelf.
This would be essential to make the model work on every-
day things like mobile phone videos. iii) We also have lim-
itations with regard to the degradations we have used in the
datasets. There is potential to test with more extreme degra-
dations and check if it improves the real world performance
on corner cases.
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