
Supplementary material: Data Augmentation for Surgical Scene Segmentation
with Anatomy-Aware Diffusion Models

1. Diffusion training details
We use the Stable Diffusion v1.5 inpainiting model as

our baseline diffusion model. The training parameters for
the CholecSeg8K dataset are shown in Tab. 1. The dataset
consists of 5080 images for training, 2000 images for test-
ing and 1000 images as validation set. We resized all the
images to 512x512. Depending upon our initial experi-
ments, we noticed for the abdominal wall that the generated
images either suffered from creating the correct texture or
having semantic leakage i.e., texture of other organs being
replaced. One reason could be the variance in the lighting
conditions. To account for this, be opted for the v-prediction
loss from [7]. This has shown to improve image quality in
low lighting. For the HeiSurf dataset, we used the param-
eters as the CholecSeg8K dataset. Similarly, we used the
diffusion model intialized from the CholecSeg8K dataset to
fine-tune for the HeiSurf dataset. We opted for this strategy
as the number of images were low in HeiSurf dataset and
theer also existed overlap of the different anatomies.

All the diffusion models were trained 1500 steps. The
generated images were evaluated at every 500 steps using
different metrics and visual examination. The pre-trained
soft edge ControlNet was used to control the anatomy shape
during the inference process. We sampled images from
the inpainted model with pre-trained CN with DDIM [8]
scheduler using 30 steps. A similar process was used for
the DSAD dataset where a guidance scale of 5.5 was used
for all the organs. For this dataset, we did not use the v-
prediction method for training any specific organ. To re-
duce the overhead in the inference pipeline, we used the fast
MultiStep [11] sampler in Stage-4 with SDEdit for image
enchancement. We opted for 5 − 8 steps for inconsistency
removal process. Since the HeiSurf dataset had smaller im-
age of images, we trained only the ControlNet-SE and T2i-
Adapter-CY models on this dataset.

Text prompts For our approach, we used simple text
prompts like an image of abdominal wall in cholec for the
abdominal wall images in the CholecSeg8K dataset. Sim-
ilarly, for the other organs and datasets we exchanged the
organ name and the dataset name accordingly. For the SD
model used in Stage-4, the text prompt was chosen as an
image in cholec for an image in CholecSeg8K.

Organ Pred-type Gd. scale
Abdominal wall v-prediction 0.6
Fat ϵ-prediction 5.0
Liver ϵ-prediction 6.0
Gall bladder ϵ-prediction 5.5
Ligament ϵ-prediction 5.0

Table 1. The parameters used for training and sampling from the
CholecSeg8K dataset.

To train the ControlNet and T2i-Adapters pre-trained
SD model is needed. We experimented with different text
prompts. Intially, we used the same prompts from our
method like an image of cholec surgery to train the SD
model. This model was then used to train the Control-
Net and T2i models. For their training, we again used the
same prompts as the SD model. We noticed that the gen-
erated images lacked quality and did not correspond well
to the conditioning masks. Hence, we used the segmen-
tation masks to extract the classes present and constructed
the prompt like an image of cholec surgery with abdominal
wall, liver and gall bladder with a hook. We train the the
SD model with such prompts and use similar prompts for
training the ControlNet and T2i models. We found the best
results with such expressive prompts rather than just men-
tioning a prompt like an image of cholec surgery. We hy-
pothesize such prompts are necessary to make the model ex-
plicitly understand the different organs present in the scene.
It is to noted that extra effort in constructing such prompts
were necessary to train the baseline models in comparison
our model which works on simpler text prompts. As we had
limits on our training infrastructure, we did not train the text
encoder of these models. As a future work we intend to train
the train encoder along with the diffusion models to scope
their performance on image quality.
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Training scheme Unet++ [13]
Dice(↑) IOU (↑) HD (↓)

No-aug 0.74±0.03 0.65±0.01 126.08±3.02

Color-aug 0.76±0.01 0.66±0.02 118.98±1.32

Color+spatial-aug 0.79±0.01 0.69±0.01 88.86±9.93

Implicit label [2] 0.22±0.05 0.11±0.01 347.33±9.12

Implicit label + Real 0.77±0.04 0.67±0.03 97.44±2.75

Only Syn 0.44±0.03 0.34±0.01 132.63±4.16

Syn + Implicit label + Real 0.75±0.02 0.65±0.03 93.82±1.87

SS-Syn + Real 0.80±0.03 0.70±0.02 102.01±3.34

Syn + Real 0.82±0.01 0.72±0.01 85.27±1.04

Table 2. The segmentation scores on the DSAD dataset. The best
scores are indicated in bold.

2. Segmentation training details
To train the baselines on different augmentation

schemes, we collected and experimented with multiple
methods. We curated a set of color and spatial aug-
mentations based on prior works that focussed on medi-
cal (surgical) domain [1–3]. We used the following aug-
mentations:grid/elastic distortion, perspective change, RGB
channel shift, ColorJitter, blur, hue, contrast & brightness,
maskdropout. We tuned the hyperparameters included in
each of these methods to attain the best scores. Similarly,
for spatial transformations we used perspective change, grid
distortion, rotation, random flipping. For the combined
(color+spatial) augmentations, we chose the best combi-
nation via experimentation with different combinations of
methods mentioned before. To find the best combinations of
methods and hyperparameters, we conducted experiments
on each dataset separately.

3. Additional results
The segmentation results on the DSAD dataset with

Unet++ architecture is shown in Tab. 2. Similarly, for the
CholecSeg8K dataset, we also trained the UperNet-small
model. The results are shown in Tab. 3. The seg. scores
from different image synthesis models for the HeiSurf
dataset is shown in Tab. 4.

Auxillary surgical task. We used the generated datasets
to train models for another surgical task: surgical target
prediction. We used the CholecT50 [5] as it forms a part
of CholecSeg8K and DSAD datasets to show the capabil-
ity of our Syn dataset in multi-class and multi-label classi-
fication tasks. The training and test splits were maintained
throughout to avoid any data leakage. Tab. 5 shows that our
Syn datasets proves useful beyond segmentation tasks.

The results in Tab. 6 shows using UniPc [12] scheduler
with 20 sampling steps. This leads to the inference time
of 4.07s in comparison to 5.25s. We also notice that the
downstream performance of the generated images matches
that of the DDIM scheduler.

Training scheme UperNet-small
Dice(↑) IOU (↑) HD (↓)

No-aug 0.55±0.01 0.47±0.02 118.37±6.62

Color-aug 0.57±0.01 0.45±0.04 115.80±1.38

Color+spatial-aug 0.62±0.02 0.51±0.01 108.63±1.51

Only Syn 0.56±0.01 0.45±0.01 111.71±0.62

SS-Syn + Real 0.69±0.01 0.53±0.02 95.76±2.49

Syn + Real 0.67±0.01 0.53±0.01 105.90±5.28

Table 3. The segmentation scores on the CholecSeg8K dataset.
The best scores are indicated in bold.

Method Dice (↑) IOU (↑) HD(↓)
SPADE [6] 0.39±0.01 0.27±0.01 252.70±7.17

SPADE-vae [6] 0.39±0.01 0.28±0.02 234.89±6.15

Pix2Pix-HD [9] 0.39±0.03 0.27±0.02 236.35±8.73

ControlNet-SE [10] 0.40±0.02 0.27±0.03 224.28±5.02

T2I-adapter-CY [4] 0.38±0.01 0.26±0.01 234.97±8.32

Ours-SS-Syn 0.47±0.01 0.33±0.01 170.63±2.19

Ours-Syn 0.49±0.01 0.36±0.01 165.42±3.04

Table 4. Segmentation eval. on HeiSurf dataset. Our synthetic
datasets outperforms other models.

Training method CholecT50 DSAD
F1(↑) Accuracy(↑) F1(↑) Accuracy(↑)

Real with cl+sp aug. 0.50±0.05 0.52±0.04 0.42±0.002 0.83±0.001

Ours-Syn+Real 0.64±0.01 0.63±0.02 0.45±0.001 0.86±0.001

Table 5. Surgical target prediction results on two datasets.

Training method Scheduler CholecSeg8K HeiSurf DSAD

DDIM UniPC Dice(↑) IOU(↑) Dice(↑) IOU(↑) Dice(↑) IOU(↑)

Only Syn
✓ 0.53±0.01 0.41±0.02 0.35±0.02 0.24±0.01 0.60±0.03 0.51±0.01

✓ 0.51±0.02 0.39±0.01 0.34±0.01 0.24±0.03 0.58±0.01 0.50±0.01

Ours-Syn + Real
✓ 0.68±0.01 0.56±0.01 0.49±0.01 0.36±0.01 0.83±0.01 0.74±0.01

✓ 0.66±0.02 0.55±0.03 0.49±0.01 0.37±0.01 0.82±0.01 0.74±0.02

Table 6. Inf. time comparison with different schedulers.

The additional qualitative results from our method on
CholecSeg8K, HeiSurf and DSAD datasets are shown
in Figs. 1 to 3 respectively. Fig. 4 and Fig. 5 show the
comparison of images with and without the image enhance-
ment stage. For conditioning the ControlNet we use edge
images extracted from the segmentation mask. A compari-
son is shown in Fig. 6. The per-organ evaluation scores on
the three datasets are shown in Figs. 7 to 9. We see con-
sistent improvement across different organs when combing
our generated datasets with real images.
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Figure 1. The generated images from the CholecSeg8K dataset. The different organs generated by our method followed by fusion creates
images looking similar to real images. The diversity in the texture of the generated organs are quite visible in these images(zoom into the
images to see the texture difference). Column 3, 4, 5 clearly shows the difference in the liver and gall bladder textures. In the 6th column
we see that the generated images differ (indicated in white box) to the real image. This is because the ligament (bright yellow organ) in
the real image was not labeled due to the camera angle and the light source and rather a common label of abdominal wall was indicated.
Since our approach uses the segmentation masks for generating the organs, the ligament is not generated in the images, which does not
affect downstream performance as the generated image still corresponds to the label. We see this an avenue for future work rather than
a limitation. Using surgical simulations, either ligament or new organs can be generated using our diffusion approach, wherein only one
model needs to be trained on that specific organ.
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Figure 2. The generated images from the HeiSurf dataset. The real images are shown as representative example, as there exists many
different textures of the organs. Our approach is capable of generating different textures for each organ while maintaining the spatial
consistency. Our method is capable of generating gall bladders (green color in segmentation mask) which is not completely covered within
the fat tissue (1st and 2nd column). One failure case is indicated in white box. The texture of the generated liver tissue differs slightly
from the real images. The real image in the 6th column contains blood on the liver. Our generated images do not synthesize blood pools
and could serve effectively as an augmentation method to improve segmentation. Adjusting the CFG scale would be method to rectify this
case.
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Figure 3. The generated images from the DSAD dataset. The generated images resemble the texture characteristics of the real images.
Especially for the liver and stomach (indicated in green and gold color in segmentation mask), we see that the generated images maintain
the texture well and adds finer details like vessels (column 3). It is to be noted that that binary datasets were utilized to generate the organs
in this case. This results shows the particular importance of our approach that only real binary datasets can be used to generate multi-class
datasets.



Figure 4. The images generated using the DSAD dataset with and without the Stage-4 in our pipeline. The Stage-4 is an image enhancement
process that removes the inconsistencies from the image fusion stage. The white boxes indicate the regions comparing the difference
between the real image, image after Stage-3 (3rd column) and image generated after Stage-4. Clearly, fusing the images creates a junction
between the different organs. There also exists a slight difference in the background lighting of the generated images from Stage-3 (3rd

column). To remove them these inconsistencies, the images are processed via a SDEdit method combined with SD model. We use the
SD because the model is already aware of the texture of such surgical images. In process leads to a smoother junction between the organs
which resembles like the real images.



Figure 5. The generated images from the HeiSurf dataset before and after Stage-3. In the 1st column, we noticed that the images ater
Stage-4 had finer details like vessels added to the gall bladder. This is advantageous as it enhances the real texture of organs. Additionally,
the edges between the organs are smoothened, which is similar to the real images.



Figure 6. The conditioning signal for the pre-trained ControlNet model in Stage-2 of our approach is edge images. Naturally, these edges
can be extracted from the real images using a edge detector. However, as shown in column 3 and 7, the extracted edges include the tools and
other edges which does not correspond to the particular organ. Using such an extracted edge images would lead to inconsistent generation
of the organ. Hence, we used the segmentation mask as the input to the extract the edges. As seen in column 4 and 8, the extracted edges
correspond better to the segmentation mask. In our method, we simultaneously use the same segmentation mask to mask the region for
inpainting and also to extract the conditioning signals for the ControlNet.



(a) The dice score on the Cholec80 dataset.

(b) The IOU score on the Cholec80 dataset.

Figure 7. The dice and IOU scores for each organ on the Cholec80 dataset. Adding our Syn datasets clearly show an imporvement in scores
across each organ. Especially, the ligament and gall bladder seems to be segmented particularly well once our Syn datasets are added.



(a) The dice score on the HeiSurf dataset.

(b) The IOU score on the HeiSurf dataset.

Figure 8. The dice and IOU scores for each organ on the HeiSurf dataset. It is evident that combining our Syn datasets leads to improved
segmentation across six different classes.



(a) The dice score on the DSAD dataset.

(b) The IOU score on the DSAD dataset.

Figure 9. The dice and IOU scores for each organ on the DSAD dataset. We did not notice clear improvements for the abdominal wall and
stomach, however, the smaller oragns like the colon, small intestine and pancreas gets segmented better by adding our Syn datasets.
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