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7. Offline and Online Experiment Details
7.1. Offline Benchmark Tasks

We evaluate VCLM and Socratic models on two exist-

ing video-based forecasting benchmarks — Long Term Ac-
tion Anticipation (LTA) [15] and Visual Planning for Assis-
tance (VPA) [33] using offline datasets — Ego4D [15] and
CrossTask [52] respectively (Sec. 4). Here, we provide a de-
tailed overview of the datasets and our experimental setup
for each of these tasks.
EgodD-LTA [15]: Ego4D consists of 3,670 hours of video
footage of everyday activities, with 53 different scenarios.
Out of this, we use the LTA (forecasting) subset, which en-
tails 116 hours. This subset contains 1723 clips that cover
an action space of 115 verbs and 478 nouns. We use the
standard train and validation splits proposed by Ego4D [15]
for our evaluation. In the LTA task, given 8 video segments
from a video clip as input, the models must predict the 20
future actions in the form of verb, noun, and verb + noun, in
correct order. Edit distance between the predicted sequence
of actions and the ground truth action sequence in the video
clip is used as a metric for evaluation following Ego4D [15].
CrossTask-VPA [52]: CrossTask consists of 2.7K instruc-
tional videos for 18 different tasks from multiple domains,
covering 374 hours of footage. Some of the action classes
were shared among different tasks, with a total of 118 ac-
tions. Each video consists of an average 7.6 action steps.
We follow [33] to construct a train split with 1,564 videos
and a test split with 752 videos. We extract multiple test
samples from each test video for VPA — specifically, given
an annotated video consisting of K steps, we generate K —Z7
samples, leaving at least Z = 3, 4 steps to predict in the fu-
ture. This leads to a dataset of 4123 test samples for our
evaluation. Our VPA task definition also follows [33] —
given an untrimmed video and a goal of the activity/task in
the video described in natural language as input, the mod-
els must predict the up to 4 future actions in the form of
verb+noun, in correct order. Evaluation compares the pre-
dicted action sequence with the ground truth actions in the
video using mloU, per step accuracy, and success rate met-
rics (Sec. 4).

7.2. Model Modifications for Online Evaluation

Goal-Conditioned Summarization. Sec. 5.2 provides an
overview of modifications for our multimodal LLMs to en-
able online evaluation. The online settings entail noisy
stream of redundant video frames leading to long narration
history. To handle such long narration histories in a robust

manner, one of the biggest changes we make in these mod-
els is goal-conditioned summarization. This greatly reduces
the number of tokens in the input and allows the language
model to attend to a longer narration histories more robustly
while still leveraging few-shot examples. The summariza-
tion is performed by LLama2-13B Chat using the following
prompt:

A person is currently attempting to
[goal]. Their task is in progress and
their goal is not yet complete. The
following are low level narrations of
their actions.

[narration history]

Please summarize these into a smaller
set of high-level narrations. Focus on
narrations that are relevant to the
goal and do not include irrelevant
narrations in your high-level summary.
Begin every high-level narration with
the text, 'A person ’:

1. A Person

The output from the LLM is parsed by only keeping lines
starting with numbers. The helps remove any conversation
or filler language in the response. This summarized history
often contains 5-20 high-level narrations and is used by the
LLM to perform prediction. In cases where the raw narra-
tion history exceeds the LLM context window, narrations
are uniformly subsampled by the smallest integer factor to
fit within the LLM context window. Few-shot examples are
also summarized offline.

Goal-Generation for Few-shot Examples. We evaluate
the utility of goal conditioning in online experiments, akin
to our offline experiments (Sec. 9.5). To that end, our pi-
lot studies show that goal-conditioned prediction performs
much better than prediction without goals in the online set-
ting. Specifically, we find that goals help the LLM identify
which parts of noisy input video stream and narrations are
relevant to completing the activity. In order to ensure our
few-shot examples to the multimodal LL.Ms, which are ob-
tained from Ego4D, are appropriately goal conditioned for
online experiments, we need to annotate these with goal
information. Since, goal information is not available in
Ego4D, we again resort to LLMs for obtaining pseudo goal
labels for these videos. Specifically, we use Llama2-70B
chat with the following prompt to generate goals for Ego4D
LTA training set videos:

The user took these physical actions:
[Narration History]

What are the top 3 goals of the user?

Respond only in JSON that satisfies the
Response type:

type Responselist = [Response_l1,
Response_2, ..., Response_3]

type Response = {



user_goal: str;

confidence: float;

explanation: str;

}

Provide {user_goal} in the format of ’They
wanted to {user_goal}’, the
{confidence} of the goal given the
context (on a scale from 0 to 1), and a
terse {explanation} of the given goal
and its confidence.

where [Narration History] is the full narration
history for the clip generated by LaViLa. We parse the out-
put text as a JSON and select the goal with the highest con-
fidence.
Performance Comparison Between Offline and Online
Models. We also evaluate our online-modified models on
the VPA task to ensure our modifications do not drastically
alter performance. Table 5 shows the performance differ-
ence between online and offline models is relatively mini-
mal for Z = 1 despite the online models replacing the ex-
plicit segmentation model with uniform segmentation for
faster inference. Note that in the online setting, the models
provide only the next action to the user, wait for the user to
execute that action, and then replan, which is a prediction
horizon of Z = 1. Prior work has shown that poor seg-
mentation can reduce performance on the VPA task by up
to 50% [33]. Our online modified models see a maximum
14% drop in performance, which indicates our online mod-
ifications (clustering and summarization) help mitigate the
performance drop from our simplified segmentation.
Model Z=1 7=3 Z=4
mAcc SR mAcc mIOU SR mAcc mIOU
Socratic Online 225 23 17.9 29.8 1.1 17.8 34.7
VCLM Online 233 43 18.5 332 1.8 18.9 41.3

Socratic Offline 228 5.6 222 356 3.0 21.2 37.4
VCLM Offline 272 6.9 25.2 41.7 43 25.5 45.5

Table 5. Comparison between online and offline models on the
VPA task. Note that the online models suggest the next step to
the user, wait for the user to execute that step, and then replan
Z=1.

7.3. Online System Inference and Hardware

The remote server for online inference utilizes 5
NVIDIA Tesla V100 GPUs with 32GB of VRAM each. The
LaViLa narrator model occupies the first GPU. The narra-
tor model runs asynchronously on batches of frames sent by
the local machine every 2 seconds and saves clustered nar-
rations to a cache. The total communication latency for a
batch of frames from the Aria glasses to the local machine
and then to the remote server was less than 400ms. The
Llama2 13B model was distributed across the remaining 4
GPUs using the Huggingface transformers and accelerate
libraries. When the user triggers assistance, the narration
thread is paused and the set of narrations in the cache is
used for summarization and prediction. The total latency
from the time the user requests assistance to the time the
assistance is relayed to them over the earbuds ranges from
10-25 seconds, depending on the length of the history. After

assistance is communicated to the user, the narration thread
resumes.

8. Prompt Templates for LTA and VPA

Detailed prompt templates for our offline benchmark
tasks LTA and VPA as shown in figures 5 and 6. The
prompt for LTA (Fig. 5) consists of examples text narra-
tion sequences pertaining to the full video from 8 videos of
the training set and the visual history of 8 segments from the
current video. The narrations are from the LaVila narration
model [49]. Likewise, the prompt for VPA (Fig. 6) includes
examples of full action sequences consisting of ground truth
(GT) action labels for 8 videos from the training set and
the visual history of the current video, which entails actions
predicted following previous work [33] noted as [predicted
action].

"Task description"
#Prompt example %8 from training set:

1. [narration]
2. [narration]
N. [narration]

#Visual history from current video:

T-8. [narration]
T-1. [narration]
T.

Figure 5. Prompt template for Ego4D LTA. We set N to be the
total number of actions in the video and 7" to be the starting action
index that we want to predict in the current video.

"Task description"

#Prompt example %8 from training set:
Goal: [CrossTask Task Title]
1. [GT action]
2. [GT action]

N. [GT action]

#Visual history from current video:
Goal: [CrossTask Task Title]

1. [predicted action]
T-1. [predicted action]
T.

Figure 6. Prompt template for CrossTask VPA. We use the
video’s task title from CrossTask as goal description for VPA and
append it in the front of the action sequence in our prompts for
VPA. We use predicted actions following previous work [33] to
construct the visual history of the current video. N and 7" follow
the same design as in LTA.



Supervised Z =1 Z=3 Z =4

Model
Samples mAcc SR mAcc mIOU SR mAcc mIOU
Random 09 0.0 09 1.5 00 09 1.9
Socratic 7B 8 223 43 21.0 333 26 208 362
VCLM 7B 8 279 6.8 248 41.7 41 240 450
Socratic 13B 8 228 56 222 356 30 212 374
VCLM 13B 8 272 69 252 417 43 255 455
Socratic 70B 8 28.1 9.1 266 43.6 55 255 457
VCLM 70B 8 28.1 89 269 434 6.1 268 469

Table 6. Varying LLM size in visual planning (VPA) on
CrossTask. Mean accuracy, mean IoU, and Success Rate (SR)
percentages are shown for short Z = 1 and medium Z = 3,4
horizons. We use predicted actions from a finetuned segmentation
model following previous work [33] to construct the visual history
of the current video.

9. Ablations on Visual History Representation

9.1. Evaluation of the benefit from implicit rep-
resentation of visual information for smaller
LLMs across different LLM sizes.

Tables 6 above shows that mAcc gap in VPA task for 7B
models with and without visual conditioning at Z = 1,3,4
is 5.6%, 3.8%, and 3.2% respectively. The mAcc gap for
13B models at Z = 1,3,4 is 4.4%, 3%, and 4.3% and for
70B models is 0%, .3%, and 1.3% respectively as in Table
3. Implicit visual representation aids smaller LLMs across
model sizes.

9.2. Model Performance Across LLM Size

Table 7 shows how performance on the Long-Term Ac-
tion Anticipation task varies with the size of LLM used in
the approach. Note the scaling laws observed in 13 and
70 billion parameters are consistent when looking at ap-
proaches that uses smaller LLMs with 7 billion parameters.

. ED@Z=20

Model Model Size Verb Noun AChion
AntGPT [48] 7B/13B 756 725 -
Palm* [16] 7B 732 812 958
Socratic 7B 7B 731 786 951
VCLM 7B 7B 792 765 958
Socratic 13B 13B 731 732 929
VCLM 13B 13B 740 751 932
Socratic 70B 70B 726 712 928
VCLM 70B 70B 739 731 931

Table 7. Varying LLM size in Long-term action anticipation
on Ego4D. Edit distance values for forecasting horizon of Z = 20
actions is shown on v1 validation set.

9.3. Task-relevant information from visual history

Different aspects of the visual history can be extracted
and represented in text for VCLMs and Socratic models.
It is unclear what aspects should be extracted to enable ef-
ficient forecasting in such models. To that end, we com-

Information Type VLM ED@(Z=20)

Verb  Noun  Actions
Narrations Only LaViLa 731 187 951
Narrations + Objects LaViLa + Detic 134 776 952

Narrations + Actions LaViLa + LaViLa Dual Encoder 732 812 958

Table 8. Comparison of different information types/modes that
can represent a video’s history using Socratic models on LTA.
Edit distance values for forecasting horizon of Z = 20 actions is
shown on v1 validation set.

pare different modes of task-relevant information for So-
cratic multimodal LLMs on the Ego4D LTA task. Each
of these modes of information can be obtained from dif-
ferent pre-trained vision-language models. Specifically, we
consider information on objects, actions, and narrations de-
scribing activities in the video as the three relevant informa-
tion modes.

We obtain object descriptions using Detic [50] with the
Ego4 LTA noun set as a custom vocabulary, recognized ac-
tions using the LaViLa dual encoder with the Ego4D LTA
closed-set of actions, and open-set narrations using the LaV-
iLa narration model [49]. We test three settings i.e., com-
binations of these information modes: only narrations, nar-
rations and objects, narrations and actions. The only narra-
tions setting uses the same prompts as our Socratic model
described in Sec 3. The narrations and objects setting
prepends a list of recognized objects from the input video
before the narrations in the visual history. The narrations
and actions setting follows the same prompting structure as
Palm [16]. All three settings use the same retrieval-based
prompting approach as described in Sec 4.2. Action and
object prompts are generated on the LTA train set.

Table 8 shows the results for these three settings on
Ego4D LTA. All models use Llama2-7B as the LLM. As
seen in the table, neither adding object nor action infor-
mation from the visual history noticeably improves perfor-
mance on the LTA task. Following this result, we determine
that object and closed-set action information is a subset of
open-set narration information when it comes to visual his-
tory representation. Consequently, we use only narrations to
represent visual history for both VCLM and Socratic mod-
els in all our offline and online experiments (Sec. 4, 5).

9.4. Comparison of narrators for visual history

Video history might be sufficiently represented using
open-set narrations that describe the activity in the video
(Tab. 8) for video-based forecasting tasks. To determine
an appropriate video narration model for our multimodal
LLMs in forecasting tasks, we compare two SOTA video
narrators — LaVilLa [49] and the Blip-2 [21]. We perform
this comparison using the Llama2-7B Socratic models on
LTA (Table 9). Following Palm [16], we feed the median
frame from a video segment along with the prompt “A per-
son is ” to the Blip-2 model for generating a narration de-
scribing the video segment. In contrast, the LaVilLa nar-
ration model uses 4 evenly spaced frames. We parse the
output of the narrator model by replacing references to the
participant with “A person” to ensure consistent structure.



ED@(Z=20)]

Narrator  Input Frames Narrator LM

Verb  Noun  Actions
LaViLa 4 GPT2-XL (1.5B)  .731 787 951
Blip-2 1 OPT 2.7B 758 .883 978

Table 9. Comparison of narrators using Llama2-7B Socratic
models on LTA. Narrator LM represents the LLM backbone for
each narrator model. Edit distance values for forecasting horizon
of Z = 20 actions is shown on v1 validation set.

Note that, LaViLa narrator uses GPT2-XL (1.5 B param-
eters) as its LLM backbone while Blip-2 uses OPT 2.7B.
LaVilLa is also explicitly trained on Ego4D to narrate video
clips [49].

As seen in Table 9, despite its smaller language model
backbone, LaVilLa narrator significantly outperforms Blip-
2 for capturing relevant visual history for forecasting. This
is likely due to LaVilLa’s narration-specific and egocentric
training data, as well as consumption of 4 frames from the
input video rather than just 1. Based on this analysis, we use
LaViLa narrator for open-set narration generation of visual
history for all our experiments unless otherwise specified.

9.5. Medium history-medium horizon forecasting
in VPA without goal

Our offline benchmark tasks — VPA and LTA, cover the
spectrum of medium to long forecasting based on medium
to long visual history respectively. However, unlike LTA,
the VPA task [33] also uses the goal of the activity in
the video, in addition to the visual history, for forecast-
ing future actions. To understand the performance of mul-
timodal LLMs on medium history, medium horizon fore-
casting problems without the availability of goal informa-
tion, we conduct an ablation on VPA. Specifically, we eval-
uate the best performing multimodal LLM — VCLM 70B
on VPA with and without goal information (Table 10). We
simply remove the goal information from the VPA prompt
(Fig. 6) for this analysis.

The results show that the information regarding the goal
enables the VCLMs to make better mid-horizon forecast-
ing predictions while slightly decreasing the accuracy of
short horizon predictions. Thus, the performance of multi-
modal LLMs may overall drop in medium history, medium
horizon forecasting problems when goal information is not
available. Since the availability of goal information leads
to improved performance and since such information may
be easy to obtain in user-in-the-loop settings, we frame our
online evaluation using VPA’s task definition i.e., with in-
clusion of goal.

9.6. Text-based history representation for VCLMs
on long-history tasks

Since current VCLMs may be capable of encoding
only limited visual history, we also provide text-based
representation of history as input to VCLMs for our long
history-based forecasting tasks e.g., LTA. We conduct an
ablation experiment to determine the contribution of such
additional text-based history representation — when used

Model Goal £ =1 Z=3 Zz=4
mAcc SR mAcc mIOU SR mAcc mIOU
VCLM 70B No 286 8.1 265 418 55 263 450
VCLM 70B Yes 28.1 89 269 434 6.1 26.8 469

Table 10. Short and medium horizon visual planning (VPA)
on CrossTask w/wo the goal. Mean accuracy, mean IoU, and
Success Rate (SR) percentages are shown for short Z = 1 and
medium Z = 3,4 horizons. LaViLA is used as the narration
model while Internvideo is used as the video encoder for VCLM
as in LTA.

Model Visual History Visual Encoder ED@(Z=20){

Verb Noun Action
VCLM 70B \% Internvideo 1.000 1.000 1.000
VCLM 70B V+T Internvideo+LaViLa ~ 0.739  0.731  0.931

Table 11. Long-term action anticipation on Ego4D w/wo text
history. Edit distance values for forecasting horizon of Z = 20
actions is shown on v1 validation set.

along with visual embeddings in VCLMs. Specifically,
we want to determine how VCLMs without text history
perform in long-history tasks. We run this ablation with
a Llama2-70B chat VCLM on LTA using the following
prompt:

Predict the next 20 actions in the form of
(verb, noun)

The result in Table 11 shows that without a text-based
history representation, the VCLM model fails to output
meaningful predictions. Text-based history representation
both provide a template for generation and help ground the
VCLM to information not captured in its 8 input frames.
We show examples of generated text with and without text
history below.

With text history:

//Generated text:
16. A person drops a garlic peel in a bowl
17. A person presses a garlic clove with

the knife

18. A person presses a garlic clove with a
knife

19. A person drops the garlic clove in the
bowl

Without text history:

//Generated text:

Pairs e.g. (drive, road) 1. Put CDs on top
of magazines . 2. Paste pictures
butterflies and birds near flowers . 3.
Glue colored paper sequins on the bench
in front of the boat

//Generated text:



pairs. 1. tv, eyes 2. jako the bird is
used.

10. Overview of existing VCLM and Socratic
Models

Tables 12 and 13 show how our implemented Socratic
and VCLM models compare to other models within each
approach. Socratic models differ in what kinds of text the
VLM’s generate (actions, narrations, objects, etc), which
VLMs are used, whether prediction is conditioned on an in-
ferred goal, how prediction is performed, either by directly
generating subsequent actions, or using chain of thought
reasoning, and what LLM is used. We select our imple-
mented socratic model by testing actions, narrations, and
objects on the Ego4D LTA task (table 8). We found that
adding actions or objects, provided by the LaViLa encoder
[49] and Detic [50] respectively, did not improve perfor-
mance over open-set narrations provided by the LaVila nar-
rator model [49]. Accordingly, our representative Socratic
model implementation uses only narrations as a text-based
representation of visual history.

VCLM models attach a pretrained vision encoder to a
pretrained LLM by mapping outputs from the vision en-
coder into the token embedding space of the LLM. VCLM
models primarily differ by what pretrained image or video
encoder is used, how aggregation across image level fea-
tures is done if an image encoder is used, whether the model
explicitly aligns video representations with text represen-
tations, whether the entire model is fine-tuned on an in-
struction dataset, and what LLM-backbone is used. Some
VCLMs for video use a pretrained video encoder that sam-
ples frames from the video and processes them together. In
contrast, other video VCLMs use a pretrained image en-
coder on a set of sampled frames and aggregate image-
level features with a separate aggregation module. This ag-
gregation module could be a form of attention, concatena-
tion, pooling, or convolution. Prior work has indicated no
clear advantage between image or video level features [24].
VCLM models also employ two different methods for train-
ing, alignment training and instruction tuning. In alignment
training, aggregation and projection layers are trained to
better map inputs from the vision encoder space to the LLM
token space using a set of video-text pairs and a contrastive
loss function. In instruction tuning, the entire LLM back-
bone is finetuned using a multimodal instruction dataset.
While not every VCLM uses both of these training meth-
ods, multiple prior works have found that alignment train-
ing followed by instruction tuning is generally more per-
formative [24,31]. Given these insights, we select Any-
MAL [31] as a representative VCLM method for our bench-
mark tasks. AnyMAL uses InternVideo [42] as a video en-
coder, followed by an attention-based projector (perceiver
resampler [1]) and is trained with both alignment training
and instruction tuning. Furthermore, AnyMAL is trained on
the HowTo100M dataset [30]. This dataset features videos
of people performing daily tasks and is thus more relevant to
our use case than VCLMs trained with other video datasets.

Finally, AnyMAL also features 13-billion and 70-billion pa-
rameter versions, allowing us to test scaling laws for multi-
modal LLM prediction. The InternVideo endocder samples
8 frames from input videos. These frames, once encoded,
use 256 tokens of the 2048 token context window of the
Llama 2 models.

11. Activity Scripts for Online Evaluation

The following are the scripts participants used in the on-
line study. Users complete steps up to the “Get Assistance”
mark in any order they deem reasonable. The vision-based
assistant takes over from there to guide users in completing
the activities. The remaining steps are the steps we expect
users to execute to successfully complete the activity.

11.1. Prepare a Latte

1. Get a cup and put it in the espresso machine
2. Pull 2x espresso shot using the espresso machine

3. Pour milk into a metal pitcher
Get Assistance

4. Froth milk using the steam wand
5. Pour milk into espresso cup

11.2. Make a Caprese Salad
1. Cut the tomato into slices
2. Cut the fresh mozzarella into slices
3. Tear the basil leaves

4. Arrange the tomato on the plate
Get Assistance

5. Arrange the mozzarella slices on the plate
6. Sprinkle the torn basil on top
7. Drizzle olive oil on top
11.3. Make a BLT Sandwich
1. Cut three slices of tomato
2. Pull off a leaf of lettuce
3. Take two slices of bread
4. Put mayonnaise on the bottom piece of bread

5. Put lettuce on the bottom piece of bread
Get Assistance

6. Put tomato slices on top of the lettuce
7. Put bacon on top of the tomato slices

8. Put the top piece of bread on



Method Text VLMs Goal-Conditioned Prediction LLM
Palm [16] Actions, Narrations EgoVLP, Blip2 No Direct GPT-Neo-1.3B
Ant-GPT [48] Actions CLIP Yes Chain-of-thought Llama2 7B/13B
VideoChat-Text [22] ~ Actions, Objects, Audio Transcript ~ InternVideo, InternImage, Whisper No Direct Vicuna 13B
Socratic (Ours) Narration LaViLa-Narrator Yes Direct Llama2 13B/70B

Table 12. A comparison of Socratic models for prediction. Models are compared by type of text, VLMs used, whether they are goal-
conditioned, how they perform prediction, and which language models they use.

Method Encoder Aggregation Alignment Training  Instruction Tuning LLM
Video-LLaVA [24] LangugeBind N/A Yes Yes Vicuna 7B
LLaVA-NeXT [26] CLIP Concatenation Yes Yes Vicuna 7B/13B
Video-ChatGPT [29] CLIP AveragePooling No Yes Vicuna 7B
VideoChat-Embed [22] BLIP2 Q-Attention Yes Yes Vicuna 13B
Video-Llama [47] BLIP2 Q-Attention Yes No Llama2 7B/13B
Video-Llama 2 [8] CLIP Spatial-Temporal Conv Yes Yes Mistral-Instruct 7B
TimeChat [36] EVA-CLIP Q-Attention No Yes Llama2 7B
AnyMAL (Ours) [31] InternVideo N/A Yes Yes Llama2 13B/70B

Table 13. A comparison of Visually-Conditioned Language Models capable of processing video. Models are compared by vision
encoder, how image level features are aggregated (if needed), whether the model is explicitly trained to align video features to text, and

whether the model is instruction tuned.

Method Task Redundant Infeasible Irrelevant
BLT 7 4 2
Caprese 17 3 1
VCIM ) tte 8 6 1
Total 32 13 4
BLT 16 4 3
. Caprese 12 0 1
Socratic Latte 5 12 3
Total 33 16 7

Table 14. A breakdown of cases where participants skipped
assistant instructions. Skips were categorized as redundant ac-
tions the participant had already completed, infeasible actions that
could not be completed in the current task, and irrelevant actions
which had no bearing on the current task. The numbers represent
total numer of skips across all participants.

12. Model Error Analysis in Online Evaluation

Table 14 shows a detailed breakdown of cases when par-
ticipants skipped assistant instructions by method and ac-
tivity. Recall that participants could skip instructions that
were already completed (redundant), were infeasible in the
current activity setting, or were irrelevant to the activity at
hand. Both the Socratic and VCLM approaches have a sim-
ilar total amount of skipped instructions and a similar distri-
bution across skip reasons. While redundant skips were the
most common type of skip by far, (63% of all skips) the So-
cratic approach suggested a lot of infeasible actions for the
latte activity specifically. Many of these actions were rele-
vant to other latte settings (grinding coffee beans) or actions
that would have been completed prior to the start of the ac-
tivity episode (like setting up the espresso machine). Inter-
estingly, the VCLM approach made significantly fewer in-
feasible suggestions for the latte task, which may be a prod-
uct of its direct visual conditioning. However, this lower
skip rate did not translate to a higher activity completion

rate.

13. Study Activity Visualization

Figure 7 visualizes the most successful episode from
each of the 3 cooking activities in the online study. Un-
fortunately, the BLT sandwich activity had no successful
episodes so the closest episode is visualized. Figure 8 shows
a planning mistake in the latte activity. In the top row,
the assistant suggested that the participant add milk before
steaming it. The bottom row shows the correct sequence of
actions. Grounding mistakes result in skipped actions and
were not executed.

14. Participant Data Collection Practices

We obtained internal approval to collect egocentric
videos from volunteer study participants in our office. We
ensured that egocentric data contained no identifiable par-
ticipant information. The data was stored in a private drive
which only the study administrators had access to. The
faces of other people who appear in participant videos were
also blurred to protect their identities. We have no plans to
release the full data beyond what is currently available for
visualization purposes.
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Figure 7. A visualization of the most successful episodes from each cooking activity. From top to bottom the activities are: make an
espresso latte, make a BLT sandwich, make a caprese salad. No participant successfully accomplished the BLT activity in our study.

Unassisted Actions I Correct Actions I Planning Errors

A

Take Cup Pull Shot Pour Milk Add Milk Steam Milk

Take Cup Pull Shot Pour Milk Steam Milk Add Milk

Partial Progress Assistance Evaluation

Figure 8. Visualization of a planning mistake in the latte activity. Top row shows a planning mistake during the latte activity. Bottom
row shows the correct sequence of actions for completing the activity. Optional actions are omitted from the sequence.



