
Deep Joint Unrolling for Deblurring and Low-Light Image Enhancement (JUDE)
Supplementary

Tu Vo Chan Y. Park
KC Machine Learning Lab

{tuvv, chan.y.park}@kc-ml2.com

Abstract

This supplementary material accompanies the paper
"Deep Joint Unrolling for Deblurring and Low-Light Image
Enhancement (JUDE)" submitted to WACV 2024. We begin
by detailing the derivation of our closed-form solution. Then
we provide additional qualitative analysis on both synthetic
data [7] and real-world data [5].

1. Derivation of closed-form solution
In this section, we will provide the complete closed-form

solutions for each variable Solution to the Optimization
described in Section 3.2 of the submitted paper.

Update 𝑡+1: From the original formulation of :

𝑡+1 = argmin

𝑔𝑃 () +
𝜆2
2
‖𝑡 − ⊙𝑡‖

2
2

+⟨𝚪𝑡,𝑡 − ⟩ +
𝜆3
2
‖𝑡 − ‖

2
2

= argmin

𝑔𝑃 () + 𝑇 𝑟
(

−𝚪𝑡 𝑇) +
𝜆3
2
𝑇 𝑟(𝑇 − 2𝑘 𝑇)

+
𝜆2
2
𝑇 𝑟

(

(𝑡 ⊙)(𝑡 ⊙)𝑇 − 2𝑡(⊙𝑡)𝑇
)

= argmin

𝑔𝑃 () + 𝑇 𝑟
(

−𝚪𝑡 𝑇 − 𝜆2𝑡 ⊙𝑡 𝑇 − 𝜆3𝑘 𝑇)

+
2

𝑡 𝜆2 + 𝜆3
2

|| ||

2
𝐹

= argmin

𝑔𝑃 () + ⟨−𝚪𝑡 − 𝜆2𝑡 ⊙𝑡 − 𝜆3𝑘, ⟩

+
2

𝑡 𝜆2 + 𝜆3
2

|| ||

2
𝐹

= argmin

𝑔𝑃 (𝑡)+
2

𝑡 𝜆2 + 𝜆3
2

(

𝑡−
𝜆2𝑡𝑡 + 𝜆3𝑡 + 𝚪𝑡

2
𝑡 𝜆2 + 𝜆3

)2

(1)

= 𝑔𝑃 (−
𝚿𝑡

2
𝑡 𝜆2 + 𝜆3

) (2)

where: 𝚿𝑡 = 𝜆2𝑡𝑡 + 𝜆3𝑡 + 𝚪𝑡.
The operator 𝑔𝑃 is associated with regularization func-

tions 𝑔(·). As stated in the paper, we use ResUNet [3] to
implement the Data Operator to learn from training data
and effectively reconstruct intricate and diverse visual fea-
tures.

The same expansion can be applied when solving 𝑡+1and 𝑡+1, resulting in the solutions in Equation 13, and
Equation 18 in the submitted paper.

Update 𝑡+1:

𝑡+1 = argmin

⟨𝚪𝑡, − 𝑡+1⟩ +
𝜆3
2
‖ −𝑡‖

2
2 (3)

By differentiating Equation 3 with respect to and set-
ting derivative to 0, we have

𝜕
(

⟨𝚪𝑡, − 𝑡+1⟩ +
𝜆3
2 ‖ −𝑡‖

2
2

)

𝜕
= 0 (4)

⇔ −𝚪𝑡 − 𝜆3𝑡+1 + 𝜆3 = 0 (5)
Then the closed-form solution for can be derived as:

⇔ =
𝜆3𝑡+1 + 𝚪𝑡

𝜆3
(6)

Similarly, we can find the solution for 𝑡+1 by applying
the derivative and setting it to 0.

Update 𝑡+1:

𝑡+1 = argmin

𝜆1
2
‖ − ⊗ 𝑡‖

2
2

+⟨𝚫,𝐭 −𝐭+𝟏⟩ +
𝜆𝟓
𝟐
‖𝐭 −𝐭+𝟏‖

𝟐
𝟐

(7)

⇔ 𝜆1(𝑇𝑡 − 𝑇) + 𝜆5(𝑡 −𝑡+1) + 𝚫𝑡 = 0 (8)
By applying Fast Fourier transform (FFT) 𝑡+1 has the

following solution:

𝑡+1 = −1
{ (𝜆1𝑇 + 𝜆5𝑡+1 −𝛀𝑡)

𝜆1 ()2 + 𝜆5

}

(9)

2. Ablation Study
2.1. Impact of choosing different components

In this section, we evaluate the impact of selecting dif-
ferent CNN architectures for the data modules and the inte-
gration of the Reflectance Denoiser. For the data modules,
we experimented with IRCNN [6] and ResUNet [3], both
of which are common baselines for data priors. As shown
in Table 1, ResUNet outperforms IRCNN when being used
as the data priors. In addition, adding the Reflectance De-
noiser before merging significantly boosts the performance,
and delivers the highest image quality, demonstrating the ef-
fectiveness of our configuration.

Components Metrics
IRCNN ResUNet Reflect. Denoiser PSNR ↑ SSIM ↑ LPIPS ↓

✓ 25.644 0.928 0.134
✓ 26.486 0.929 0.127
✓ ✓ 26.884 0.932 0.127

Table 1. Ablation study on different components of JUDE. Em-
ploying ResUNet as the data module greatly enhances the perfor-
mance. In addition, the combination of ResUNet as the data prior
and the reflectance denoiser added provides the best performance.

2.2. Impact of choosing different K

We evaluate the impact of the number of unrolled iter-
ations K on network performance and report it in Table 2.
Specifically, we experimented with K values of 3, 5, and 6.
As presented in Table 2, with three iterations, the number
of learned features and operations was insufficient for ac-
curate restoration, resulting in the poorest performance. As
K increases, restoration performance improves due to the
greater capacity to learn features. However, further increas-
ing K (such as 6) leads to higher computational complexity
and memory usage. This occurs because a larger K propor-
tionally increases the number of operations and parameters,

making convergence more difficult and requiring more train-
ing samples. Therefore, we selected K = 5 in our work to
achieve a balance between performance and computational
efficiency.

K PSNR ↑ SSIM ↑ LPIPS ↓

3 26.019 0.923 0.134
5 26.884 0.932 0.127
6 26.393 0.929 0.131

Table 2. Ablation study on different numbers of unrolled iteration
K.

2.3. Impact of choosing different loss functions

Finally, we show the advantages of our loss function over
simple Mean Absolute Error (MAE) loss by taking out the
Fast Fourier Transform (FFT) loss. Table 3 demonstrates
the results. The performance of the model when training
with MAE alone is worse than the model trained with the
combination of MAE and FFT losses. This is because FFT
helps capture both global structures and fine details by an-
alyzing the frequency components of an image, preserving
important features like edges and textures. Additionally, it is
more resilient to large-scale intensity changes, maintaining
structural integrity across different scales.

Losses PSNR ↑ SSIM ↑ LPIPS ↓

MAELoss 26.731 0.922 0.138
MAELoss + FFTLoss 26.884 0.932 0.127

Table 3. Ablation study on different loss functions used to train
JUDE.

3. Qualitative Results
In our submitted paper, we have provided sufficient quan-

titative results (Table 1) and parts of visual comparisons
(Figs. 5-6) due to the limit of space. Here, we provide
more qualitative analysis results on both the LOL-Blur [7]
and Real-LOL-Blur [5] datasets.
3.1. LOL-Blur Dataset Evaluation

Figures 1, 2, and 3 illustrate JUDE’s efficacy compared
to other methods on various samples from the LOL-Blur
dataset [7]. Separate low-light enhancement and deblur-
ring techniques often struggle with color fidelity and detail
preservation. Methods like RetinexFormer [1], FFTFormer
[2], LEDNet [7], and FELI [4] exhibit noticeable distortions
and fail to reconstruct details in areas with significant mo-
tion, even after retraining on the LOL-Blur dataset [7]. In
contrast, JUDE accurately recovers details and enhances im-
ages to the proper brightness level.

(a) Input (b) FourLLIE →FFTFormer (c) LLFormer →FFTFormer (d) RetinexFormer →FFTFormer

(e) MIMO →RetinexFormer (f) FFTFormer →RetinexFormer (g) FFTFormer (h) RetinexFormer

(i) LEDNet (j) FELI (k) JUDE (Ours) (l) GT

Figure 1. Visual comparison on LOL-Blur dataset #0082. The yellow box indicates obvious differences and is shown at the bottom-left of
each result image. (Zoom in for better visualization.)

(a) Input (b) FourLLIE →FFTFormer (c) LLFormer →FFTFormer (d) RetinexFormer →FFTFormer

(e) MIMO →RetinexFormer (f) FFTFormer →RetinexFormer (g) FFTFormer (h) RetinexFormer

(i) LEDNet (j) FELI (k) JUDE (Ours) (l) GT

Figure 2. Visual comparison on LOL-Blur dataset #0118. The yellow and purple boxes indicate obvious differences and are shown at the
bottom of each result image. (Zoom in for better visualization.)

(a) Input (b) FourLLIE →FFTFormer (c) LLFormer →FFTFormer (d) RetinexFormer →FFTFormer

(e) MIMO →RetinexFormer (f) FFTFormer →RetinexFormer (g) FFTFormer (h) RetinexFormer

(i) LEDNet (j) FELI (k) JUDE (Ours) (l) GT

Figure 3. Visual comparison on LOL-Blur dataset #0232. The yellow and purple boxes indicate obvious differences and are shown at the
bottom of each result image. (Zoom in for better visualization.)

3.2. Real-World Data Evaluation

Figures 4, 5, 6, 7, 8, and 9 provide a comparative anal-
ysis of JUDE’s performance against other methods on the
Real-LOL-Blur dataset [5]. Various combinations of low-
light enhancement and deblurring techniques consistently
produce images that are either color-distorted or remain
blurry. Moreover, methods trained or retrained on the LOL-
Blur dataset [7] struggle with generalization, failing to accu-
rately reconstruct details and faithfully represent the original
scenes. JUDE, however, demonstrates robust generalization
capabilities, effectively recovering intricate details and en-
hancing images to a visually pleasing brightness level, even
in challenging real-world conditions.

References
[1] Yuanhao Cai, Hao Bian, Jing Lin, Haoqian Wang, Radu Tim-

ofte, and Yulun Zhang. Retinexformer: One-stage retinex-
based transformer for low-light image enhancement. In Int.
Conf. Comput. Vis., 2023. 2

[2] Zheng Chen, Yulun Zhang, Ding Liu, Jinjin Gu, Linghe Kong,
Xin Yuan, et al. Hierarchical integration diffusion model for
realistic image deblurring. Adv. Neural Inform. Process. Syst.,
36, 2024. 2

[3] Foivos I Diakogiannis, François Waldner, Peter Caccetta, and
Chen Wu. Resunet-a: A deep learning framework for seman-
tic segmentation of remotely sensed data. ISPRS Journal of

Photogrammetry and Remote Sensing, 162:94–114, 2020. 1,
2

[4] Trung Hoang, Jon McElvain, and Vishal Monga. Fast and
physically enriched deep network for joint low-light enhance-
ment and image deblurring. In ICASSP, 2024. 2

[5] Jaesung Rim, Haeyun Lee, Jucheol Won, and Sunghyun Cho.
Real-world blur dataset for learning and benchmarking deblur-
ring algorithms. In Eur. Conf. Comput. Vis., pages 184–201,
2020. 1, 2, 4, 5, 6, 7, 8, 9

[6] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang.
Learning deep cnn denoiser prior for image restoration. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 3929–3938,
2017. 2

[7] Shangchen Zhou, Chongyi Li, and Chen Change Loy. Lednet:
Joint low-light enhancement and deblurring in the dark. In
Eur. Conf. Comput. Vis., 2022. 1, 2, 4

(a) Input (b) FourLLIE → FFTFormer (c) LLFormer → FFTFormer (d) RetinexFormer → FFTFormer

(e) MIMO → RetinexFormer (f) FFTFormer → RetinexFormer (g) FFTFormer (h) RetinexFormer

(i) LEDNet (j) FELI (k) JUDE (Ours)

Figure 4. Visual comparison Real-LOL-Blur [5] dataset #C0335. The purple box indicates obvious differences and is shown at the bottom-
left of each result image. (Zoom in for better visualization.)

(a) Input (b) FourLLIE → FFTFormer (c) LLFormer → FFTFormer (d) RetinexFormer → FFTFormer

(e) MIMO → RetinexFormer (f) FFTFormer → RetinexFormer (g) FFTFormer (h) RetinexFormer

(i) LEDNet (j) FELI (k) JUDE (Ours)

Figure 5. Visual comparison Real-LOL-Blur [5] dataset #C0326. The yellow box indicates obvious differences and is shown at the bottom-
left of each result image. (Zoom in for better visualization.)

(a) Input (b) FourLLIE → FFTFormer (c) LLFormer → FFTFormer (d) RetinexFormer → FFT-
Former

(e) MIMO → RetinexFormer (f) FFTFormer → Retinex-
Former

(g) FFTFormer (h) RetinexFormer

(i) LEDNet (j) FELI (k) JUDE (Ours)

Figure 6. Visual comparison Real-LOL-Blur [5] dataset #232. The yellow and purple boxes indicate obvious differences and are shown at
the bottom of each result image. (Zoom in for better visualization.)

(a) Input (b) FourLLIE → FFTFormer (c) LLFormer → FFTFormer (d) RetinexFormer → FFT-
Former

,

(e) MIMO → RetinexFormer (f) FFTFormer → Retinex-
Former

(g) FFTFormer (h) RetinexFormer
,

(i) LEDNet (j) FELI (k) JUDE (Ours)
,

Figure 7. Visual comparison Real-LOL-Blur [5] dataset #207. The purple box indicates obvious differences and is shown at the bottom-
right of each result image. (Zoom in for better visualization.)

(a) Input (b) FourLLIE → FFTFormer (c) LLFormer → FFTFormer (d) RetinexFormer → FFT-
Former

,

(e) MIMO → RetinexFormer (f) FFTFormer → Retinex-
Former

(g) FFTFormer (h) RetinexFormer
,

(i) LEDNet (j) FELI (k) JUDE (Ours)
,

Figure 8. Visual comparison Real-LOL-Blur [5] dataset #205. The yellow and purple boxes indicate obvious differences and are shown at
the bottom of each result image. (Zoom in for better visualization.)

(a) Input (b) FourLLIE → FFTFormer (c) LLFormer → FFTFormer (d) RetinexFormer → FFT-
Former

,

(e) MIMO → RetinexFormer (f) FFTFormer → Retinex-
Former

(g) FFTFormer (h) RetinexFormer
,

(i) LEDNet (j) FELI (k) JUDE (Ours)
,

Figure 9. Visual comparison Real-LOL-Blur [5] dataset #188. The purple box indicates obvious differences and is shown at the bottom-
right of each result image. (Zoom in for better visualization.)

