
AIDE: Improving 3D Open-Vocabulary Semantic Segmentation by Aligned
Vision-Language Learning

Yimu Wang Krzysztof Czarnecki*

University of Waterloo
{yimu.wang,k2czarne}@uwaterloo.ca

3D Models

Text Encoder
of VLMs

Previous Methods

Not Aligned

Trainable

Freeze

2

3
1

1

2
3

Image/3D

Text

Misaligned Data Non-Adapted VLMs

2

3
1

1
2

3

Aligned Data

3D Models

Text Encoder
of VLMs

Adapted VLMs and Aligned Models

[𝑇𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒	𝑇𝑜𝑘𝑒𝑛𝑠]

Adaptive Segmentation Module

CLIP-Rewarded 
Alignment Module

Aligned

<latexit sha1_base64="8k3CRILvDLJXW17zWbLpHOQz36M=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WP9OHisYD+gDWWznbRLN5u4OymW0N/hxYMiXv0x3vw3btsctPXBwOO9GWbm+bHgGh3n28qtrK6tb+Q3C1vbO7t7xf2Dho4SxaDOIhGplk81CC6hjhwFtGIFNPQFNP3hzdRvjkBpHskHHMfghbQvecAZRSN5HYQn1Cy94rcw6RZLTtmZwV4mbkZKJEOtW/zq9CKWhCCRCap123Vi9FKqkDMBk0In0RBTNqR9aBsqaQjaS2dHT+wTo/TsIFKmJNoz9fdESkOtx6FvOkOKA73oTcX/vHaCwaWXchknCJLNFwWJsDGypwnYPa6AoRgbQpni5labDaiiDE1OBROCu/jyMmmcld1KuXJ/XqpeZ3HkyRE5JqfEJRekSu5IjdQJI4/kmbySN2tkvVjv1se8NWdlM4fkD6zPHwfdkkk=</latexit>

AiDe

Figure 1. Previous methods use misaligned paired data (e.g., image/point cloud 1 is closest to text 2) and freeze the text encoder trained on
2D benchmark datasets, leading to misalignment between text encoders and 3D models and suboptimal performance. Our proposed AIDE

aligns text encoders with 3D models by (i) generating better aligned 3D-image-to-text training data (CLIP-Rewarded Alignment Module)
and (ii) optimizing deep trainable prompt tokens (Adaptive Segmentation Module).

Abstract

3D open-vocabulary semantic segmentation aims at rec-
ognizing countless categories beyond the limited set of an-
notations used in traditional settings. Due to the lack of
large-scale 3D-vision-language segmentation data, instead
of training models from scratch, the current solutions dis-
till knowledge from pre-trained 2D vision-language models
(VLMs) into 3D models. However, this distillation is su-
pervised by misaligned 3D-scene-image-to-text data pairs,
consequently leading to suboptimal performance. More-
over, as 2D VLMs are trained on 2D datasets, text encoders
of VLMs, which serve as the bridge between 3D models and
an unbounded set of categories, lack 3D semantics. In this
paper, to address these issues and improve generalization
performance, we propose an AlIgned 3D Open-Vocabulary
SEmantic Segmentation framework, called AIDE, with two
novel modules. To collect high-quality and well-aligned
3D-scene-image-to-text pairs, our CLIP-rewarded align-
ment module (i) generates diverse captions of multi-view
images of 3D scenes to capture details by varying the tem-
peratures and then (ii) samples captions based on their sim-
ilarity to corresponding images for rich and accurate asso-
ciations. Next, to adapt 2D VLMs to 3D contexts, our adap-
tive segmentation module introduces (iii) trainable tokens

* Corresponding author.

within the input space and each layer of the text encoder,
while freezing the text encoder to avoid catastrophic forget-
ting. Extensive experiments show that AIDE outperforms
previous methods by a large margin on three representative
benchmarks, demonstrating its effectiveness.

1. Introduction

3D semantic segmentation has attracted extensive re-
search attention [16, 43, 64, 78, 83]. To handle real-world
scenarios where new categories frequently emerge [46, 56,
61], researchers explore the open-vocabulary setting [23,32,
79], which requires models to recognize novel classes be-
yond the typical limited training label space.

Due to the lack of large-scale 3D-image-text pairs, in-
stead of training a 3D-language model from scratch, recent
works [13, 23, 57] propose to transfer the knowledge en-
coded in pretrained 2D vision-language foundation mod-
els (VLMs), e.g., CLIP [59] and SAM [42], to 3D se-
mantic segmentation models by aligning them with gener-
ated 3D-scene-image-to-text data. After the alignment, the
3D model with the VLM text encoder can handle unlim-
ited categories. As a pioneering work, PLA [23] distills
knowledge through captioning multi-view images [19, 68]
of 3D scenes, allowing explicit association between 3D



point clouds and captions. Following PLA, RegionPLC [79]
boosts the performance by using dense object-level associ-
ations for better alignment.

However, these methods suffer from several major is-
sues, making them suboptimal. First, the generated low-
quality captions do not accurately match the correspond-
ing image data of the 3D scenes semantically. As shown
in Tab. 1a, when view images are used to retrieve cap-
tions using CLIP, recall@10 is lower than 0.034, indicat-
ing that less than 3.4% of images have their corresponding
generated captions ranked in the top 10. This misalign-
ment between captions and their corresponding images of
3D scenes—possibly stemming from the distribution shifts
between 3D datasets [2,20] and 2D datasets [37,50] used for
training captioners—hinders precise alignment between 3D
models and text encoders. It further affects hIoU, mIoUB,
and mIoUN as they are proportional to recall@10 (i.e., the
quality of data). Second, as datasets [17, 21, 37, 50] used
for training VLMs differ from 3D datasets [2, 7, 20, 63], the
alignment between 3D models and text encoders of VLMs
exhibit excessive sensitivity to the prompts used for adapt-
ing text encoders, further leading to the unreliable perfor-
mance as shown in Tab. 1b.

To address these issues, we propose a novel AlIgned
3D Open-Vocabulary SEmantic Segmentation framework,
called AIDE. Our key idea is to collect high-quality well-
aligned data and adapt the text encoder to 3D contexts for
better alignment between 3D models and text encoders, fur-
ther improving the performance. Specifically, to generate
well-aligned 3D-scene-image-to-text data pairs, our CLIP-
rewarded alignment module first generates a variety of rich
captions using different temperatures for enhancing caption
diversity and capturing rich details in the 2D images of the
3D scenes (temperature-based generation)1. Then, to en-
courage rich associations between 3D and text, we propose
the CLIP-rewarded sampling method, which samples cap-
tions based on their similarity to the 3D-scene image in each
training iteration. Next, drawing inspiration from previous
methods [23,79], we employ a hierarchical alignment strat-
egy, enabling alignment from scene-level (coarse-grained)
to entity-level (fine-grained). Furthermore, to adapt text en-
coders for 3D semantics, the adaptive segmentation mod-
ule extends beyond the popular visual prompt tuning meth-
ods [31, 38, 86] by incorporating trainable tokens not only
in the input space but also across each transformer layer
within text encoders, thereby enhancing its flexibility and
effectiveness.

In summary, our contributions are as follows,
• We identify two significant challenges within existing

methods, i.e., the misalignment in 3D-scene-image-to-
text data pairs and the need to adapt text encoders into

1Higher temperatures lead to more diverse captions, while lower tem-
peratures produce more deterministic ones.

Captioner R@10 ↑ hIoU ↑ mIoUB ↑ mIoUN ↑
OFA [68] 0.034 65.6 68.3 63.1

VIT-GPT2 [19] 0.004 65.3 68.3 62.4
Best 0.129 68.9 69.6 68.2

Ours-Sampling 0.151 70.3 69.9 70.6

(a) Impact of different captioning methods.

Prompt Templates hIoU ↑ mIoUB ↑ mIoUN ↑
Identity 65.3 68.3 62.4
Simple 64.3 67.7 61.3

Full-ImageNet 64.6 68.1 61.5

Ours 66.3 70.2 62.8
(b) Impact of different prompt templates.

Table 1. Performance of Semantic Segmentation on ScanNet
(B15/N4 Split) [20] using PLA [23]. Metrics include harmonic
IoU (hIoU), mIoU on base categories (mIoUB), and mIoU on
novel categories (mIoUN ), where base categories are annotated
during training but novel categories are not. Table 1a illustrates
that segmentation performance correlates with the recall at 10
(R@10) metric in view image-to-caption retrieval, which mea-
sures the portion of images with corresponding captions ranked
in the top 10. “Best” indicates the selection of most-aligned cap-
tions generated by OFA and ViT-GPT2, based on cosine similarity.
“Ours-Sampling” uses captions generated by our CLIP-rewarded
alignment module. Table 1b highlights the importance of prompts
for adapting 2D VLMs, with “Ours” being our proposed adaptive
segmentation module. Details of templates are in Appendix D.

the 3D setting. To address these challenges, we pro-
pose AIDE, including the CLIP-rewarded alignment
and adaptive segmentation modules.

• In the CLIP-rewarded alignment module, we gener-
ate high-quality 3D-scene-image-to-text pair data by
varying the temperatures and sample captions based
on their similarity to 3D-scene images to facilitate
precise alignment. The adaptive segmentation mod-
ule adapts the text encoder by integrating learnable
prompts across the input space and each layer of text
encoder.

• Extensive experiments on three representative bench-
marks, i.e., ScanNet [20], S3DIS [2], and one outdoor
dataset (nuScenes [7]), demonstrate the superiority of
AIDE compared to existing approaches across various
metrics, highlighting its robustness and versatility.

2. Related Work
3D Open-Vocabulary Recognition. While vision-
language models (VLMs) [39, 42, 47, 52, 59, 62, 70–73, 82]
have achieved remarkable results in zero-shot or few-shot
learning of 2D images by utilizing web-scale image-text
data [8, 21, 50], the availability of such large scale data
for 3D point clouds is limited. To extend this zero-



shot ability with VLMs in 3D point clouds, pioneering
work [85, 89] has been working on converting point clouds
into CLIP-recognizable images and aligning the point cloud
features with the language features. Following these works,
CLIP2Point [36] proposes to align the projected depth map
with CLIP’s image space by a trainable depth encoder. This
line of research focuses on aligning the 3D features with
text and image features within CLIP’s representation space,
further enhancing both the zero-shot and standard 3D recog-
nition capability.
3D Zero-Shot and Open-Vocabulary Semantic Segmen-
tation. This task aims to recognize novel classes that are
not annotated in the training data. Early attempts [1, 15, 33,
54,69,80] extend effective 2D zero-shot methods [4,6] into
3D scenarios for zero-shot 3D segmentation. 3DGenZ [54]
shows that generated data can be used to boost the per-
formance of zero-shot segmentation. Later, inspired by
the remarkable advances in 2D open-vocabulary segmenta-
tion [12, 24, 26, 54, 55, 84, 88], Ding et al. [23] first propose
PLA to distill knowledge encoded in VLMs using gener-
ated 3D-scene-image-to-caption data, allowing explicit as-
sociations between 3D and captions. Most of the recent
works [22, 23, 32, 57, 79] have focused on improving the
alignment between 3D and text representations with gen-
erated 3D-scene-image-to-text pair data using off-the-shelf
image captioning methods [19, 48, 68].

Following these methods, our work also focuses on
aligning 3D models and text encoders using 3D-scene-
image-to-text pair data. However, our preliminary results
in Tab. 1a show that the pairs are mismatched, which hin-
ders previous methods from achieving a precise alignment
between 3D models and text encoders. To address this,
we introduce a novel temperature-based caption generation
method and a similarity-based selection method (the CLIP-
rewarded alignment module), which significantly enhances
the quality of the pairs and, consequently, the model’s gen-
eralization capabilities. Furthermore, as the text encoders of
2D VLMs are trained on 2D datasets, as shown in Tab. 1b,
they are not suitable for 3D scenarios. To mitigate this issue,
the adaptive segmentation module is proposed to integrate
trainable tokens within both the input space and each layer
of the text encoder, thereby adapting it to 3D scenarios.

3. AIDE

3.1. Problem Definition

3D open-vocabulary semantic segmentation targets rec-
ognizing unseen categories, i.e., those unannotated dur-
ing training. Each 3D scene is represented by (P, Y ) =
({pi}i∈[N ], {yi}i∈[N ]), where N is the number of points, p
is a point, y ∈ Y represents the corresponding label, and
Y contains all possible categories. Additionally, we have
camera images X = {xi}i∈[Nimg] for each 3D scene, where

Nimg is the number of images available for the scene P . Y
is divided into base and novel classes, i.e., YB and YN , re-
spectively. During training, all points P are available, while
only the labels YB in the base classes YB are accessible.
Meanwhile, the point annotations by novel classes and the
names of these novel classes remain unknown. During in-
ference, the model is provided with the names of all classes
and is required to classify points belonging to them.

3.2. Preliminaries, Problems, and Solutions

Following previous works [23, 79], in AIDE, point-wise
features f3D(P ) ∈ RN×D are extracted by a 3D backbone
f3D(·), where D represents feature dimensions. Then, a
semantic segmentation classifier fseg(·) is employed, pro-
ducing the point-wise segmentation results fseg(f3D(P )).
AIDE incorporates a text encoder ftext(·), i.e., the text en-
coder of CLIP [59], to generate embeddings for captions
and classes. To align 3D and text encoders, paired 3D-
scene-image-to-text data are generated by an off-the-shelf
captioner fcap(·), e.g., OFA [68], detailed in Sec. 3.3. The
model is illustrated in Fig. 2.
Open-vocabulary segmentation [23, 32, 57]. By lever-
aging a classifier fseg(·) with class-wise embedding C ∈
R|Y|×D as weights, we obtain point-wise semantic segmen-
tation prediction Ŷ ,

Ŷ = fseg (f3D(P )) = f3D(P )C⊤ ∈ RN×|Y| , (1)

where C is generated by the text encoder ftext(·) with
prompts, e.g., “a photo of a [CLASS]”, and class names,
e.g., table and chair. During training, the embedding C only
contains the embeddings of the base categories YB. We em-
ploy the Cross-Entropy loss CE(·, ·) to train the model,

ℓseg =
∑
i∈[N ]

I(yi ∈ YB)CE
(
Ŷi,yi

)
, (2)

where I(cond) is the indicator function (I(cond) = 1 when
cond is true) and Ŷi is the predicted label for the i-th point.
Confidence-based calibration. To counteract the tendency
of models to exhibit overconfidence in base categories while
ignoring novel categories [14, 23, 79], a confidence-based
calibration branch fconf(·) is employed. It dynamically bal-
ances the confidence level by predicting whether a point
falls in the base categories. During training, we employ the
binary cross-entropy loss BCE(·, ·) as,

ℓconf = BCE(fconf(f3D(P )), Yconf) , (3)

where Yconf is the binary label (1 represents the point be-
longing to the base categories and vice versa). At inference,
confidence calibration is applied to balance predictions on
base and novel categories as Ỹ = [fconf(f3D(P ))ŶB, (1 −
fconf(f3D(P )))ŶN ], where ŶB and ŶN represent the predic-
tions on base and novel categories, respectively.
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Figure 2. The illustration of our AIDE with two proposed modules, i.e., CLIP-rewarded alignment module (Sec. 3.3) for enhancing the
quality of 3D-text data pairs and adaptive segmentation module (Sec. 3.4) for adapting text encoders. CLIP-Rewarded Alignment Mod-
ule. We first generate numerous captions using the temperature-based generation strategy, then sample captions based on their similarity
to the images (CLIP-rewarded sampling), and finally align 3D point clouds and captions hierarchically. Adaptive Segmentation Module.
To automatically find the most suitable prompt for adapting text encoders into 3D scenarios, AIDE extends prompt tuning [38] by incorpo-
rating learnable tokens in the input space and each layer of the text encoder ftext. A confidence calibration head is employed for balancing
the confidence on base and novel categories, as models tend to overestimate their certainty in base categories [23, 28, 49, 53].

In this paper, we identify two problems in the current
open-vocabulary segmentation pipeline [23,32,57] and pro-
pose corresponding solutions to mitigate them.

Problem 1 (data): Our preliminary results (Tab. 1a)
show that 3D-scene-image-text paired data for 3D scenes
are mismatched, hurting alignment of text encoders and 3D
models. Our solution: To generate aligned data, we pro-
pose the CLIP-rewarded alignment module in Sec. 3.3 with
temperature-based caption generation and CLIP-rewarded
sampling.

Problem 2 (modelling): Our preliminary results
(Tab. 1b) show that the alignment between text encoders
and 3D models is highly sensitive to prompts for generating
C, possibly due to the mismatch between 2D datasets that
text encoders are trained on and 3D datasets. Our solution:
To solve this issue and adapt text encoders by automatically
finding the most suitable prompt, we propose the adaptive
segmentation module elaborated in Sec. 3.4.

3.3. CLIP-Rewarded Alignment—Data Generation

Previous methods [13,23,57] align text encoders with 3D
models using generated 3D-scene-image-to-text data, en-
abling 3D models to recognize novel categories. However,
as shown in Tab. 1a, the images and the generated captions
are mismatched, which leads to unsatisfying performance
across both base and novel categories. A straightforward
solution to this issue is to fine-tune captioners. However, the

lack of existing large-scale 3D-vision-text data makes it im-
practical. To solve this issue and generate high-quality data,
we introduce a novel CLIP-rewarded alignment module as
shown in Fig. 2. Specifically, we first generate several cap-
tions per image by the proposed temperature-based gen-
eration, which adjusts the temperature to encourage im-
age captioners [11, 18, 19, 34, 68, 76] to produce diverse
captions to capture details in the images. Next, to enable
rich associations between 3D and text, we propose a novel
CLIP-rewarded sampling method, which selects captions
based on their similarity to the paired image data. Finally,
inspired by previous methods [9, 23, 41, 52, 62, 79, 87], to
enable coarse-to-fine alignment, we adopt hierarchical 3D-
text alignment [23, 32].
Temperature-based caption generation. A widely ac-
cepted principle of text or caption generation [3, 65, 68]
is that temperature controls the fidelity of the generated
text. For image captioners, the i-th word wi of generated
captions are sampled from the probability σv∈Vocab(P (v |
I, w1:i−1)/γ), where γ is the temperature, wi is the i-th
word, I is the input image, σ(·) is the softmax function,
w1:i−1 represents the words before the i-th word, Vocab is
the whole vocabulary, and P (v | I, w1:i−1) is the predic-
tion of v. As γ approaches 0, caption generation becomes
more deterministic, and as γ increases, it becomes more
stochastic. By leveraging this principle, the temperature-
based generation varies temperatures γ during captioning to



foster caption diversity and reduce the mismatch in image-
text data pairs. Specifically, we fix the captioner fcap(·)
and vary the temperature γ to get a set of captions Ti =
{captionj}j∈[Ncap] for the i-th view-image of the point cloud
P , where Ncap is the number of captions.
CLIP-rewarded sampling. To avoid confusing models
by matching one image with multiple captions, we need
to obtain one caption. A simple way to get that caption is
to select the best-aligned caption or summarize captions
into one. However, previous studies [40, 51, 68] suggest
that different captions represent different view perspec-
tives of the image. To fully utilize multiple perspective
captions, instead of using one perspective, we propose
the CLIP-rewarded sampling method. It samples one
caption in each iteration based on the similarity to the
image/3D data, to capture details in all captions and
highlight the details that exhibit high similarity. Specif-
ically, we first calculate the similarity sc2i,i between
the image xi and the set of captions Ti as sc2i,i =
[cos (fimg(xi), ftext(caption1)) , . . . , cos(fimg(xi), ftext
(captionNcap

))], where cos(·, ·) is the cosine similarity and
fimg(·) is the image encoder of the utilized VLM. Next, in
each iteration, we sample one caption T view,i from Ti based
on the similarity sc2i,i and obtain the image-caption data
pair (P,X, T view), where T view = {T view,i}i∈[Nimg] contains
the sampled captions for all the view images in the point
cloud P .
Hierachical point cloud-text alignment. As suggested by
previous 2D VLMs work [9, 23, 41, 52, 62, 87], hierarchical
alignment, e.g., region-level, image-level, and pixel-level
alignment, is essential to cross-modal learning. To this end,
we employ the hierarchical 3D-text alignment [23] to enable
rich cross-modal associations with the hierarchical align-
ment loss ℓalign from coarse-grained (scene-level) to fine-
grained (entity-level). Details are deferred to Appendix B.1.

3.4. Adaptive Segmentation—Text Modeling

As shown in Tab. 1b, due to the domain shift between
3D datasets [2,7,20,63] and the datasets [17,21,37,50] 2D
VLMs trained on, the performance of 3D open-vocabulary
semantic segmentation models is highly sensitive to the
prompt used for adapting the VLMs. One possible solution
is fine-tuning VLMs to handle 3D data for better alignment
between text encoders of VLMs and 3D models. However,
due to catastrophic forgetting [35,38,66], where the encoder
loses its prior knowledge while attempting to adapt to the
new data distribution, fine-tuning VLMs is infeasible.

Drawing inspiration from visual prompt tuning [10, 38,
60, 74, 75, 81, 86], we focus on tailoring VLMs for 3D ap-
plications while freezing the model’s parameters to avoid
compromising the integrity of VLMs’ knowledge, as shown
in Fig. 2. To better adapt the text encoder to 3D sce-
narios, we introduce a small number of learnable tokens

TOKENS at the input and every transformer layer in the
text encoder ftext(·). Specifically, at the input layer, we
directly concatenate the trainable tokens with the text as
the input of the text encoder. Sequentially, for each trans-
former layer, trainable tokens are merged with the output
of the previous layer as the input of the current layer, i.e.,
concat([TOKENSi, Ftext, i-1]), where concat is the concate-
nation operation, TOKENSi is the i-th layer’s trainable to-
ken, and Ftext, i-1 represents the output of the (i−1)-th layer.
The trainable tokens are updated using the overall training
objective (Eq. (4)). During inference, we use the trainable
tokens and the category names as the input of the text en-
coder ftext(·) to generate the category embedding C for the
adaptive semantic segmentation head fseg(·) as shown in
Eq. (1).

3.5. Training Objective

The training objective of our proposed AIDE is a
weighted linear combination of segmentation loss (Eq. (2)),
confidence calibration loss (Eq. (3)), and hierarchical align-
ment loss (Eq. (5)) as follows:

L = βsegℓseg + βalignℓalign + βconfℓconf , (4)

where βseg, βalign, and βconf are weight parameters.

4. Experiments
4.1. Benchmarks, Baselines, and Implementation

Benchmarks and category partitions. To validate the ef-
fectiveness of AIDE, we conducted extensive experiments
on three popular 3D benchmarks: ScanNet [20], S3DIS [2],
and one outdoor dataset (nuScenes [7]). For ScanNet,
we split it into three base/novel partitions, i.e., B15/N4,
B12/N7, and B10/N9, where Bx/Ny refers to x base and y
novel categories. As for S3DIS, we split it into 2 base/novel
splits, i.e., B8/N4, B6/N6. For nuScenes [7], we ignore the
“otherflat” class and randomly divide the rest 15 classes into
B12/N3 and B10/N5. Due to space limitations, the details
of benchmarks and partitions are deferred to Appendix C.1.
Evaluation metrics. Following previous methods [23,
77, 79], we employ the commonly used 3D seg-
mentation metric mean Intersection over Union for
both base and novel categories (mIoUB and mIoUN ),
alongside the harmonic mean IoU (hIoU, hIoU =
(2∗mIoUB∗mIoUN )/(mIoUB+mIoUN )) for evaluating
base, novel categories and their harmonic mean.
Baselines. We compare AIDE with LSeg-3D [45],
3DGenZ [54], 3DTZSL [15], PLA [23], OpenScene [57],
RegionPLC [79], and 3DPC-GZSL [80].
Implementation details. Following PLA [23], which is
also our baseline, we employ the sparse-convolution-based
UNet [29] with a base hidden dimension of 16 as our 3D
backbone f3D. We use CLIP (ViT-B16) [59] for the text and



Methods Venue
ScanNet

B15/N4 B12/N7 B10/N9
hIoU mIoUB mIoUN hIoU mIoUB mIoUN hIoU mIoUB mIoUN

LSeg-3D [45] ICLR’22 0.0 64.4 0.0 0.9 55.7 0.1 1.8 68.4 0.9
3DTZSL [15] WACV’20 10.5 36.7 6.1 3.8 36.6 2.0 7.8 55.5 4.2
3DPC-GZSL [80] ICCV’23 20.2 32.8 7.7 - - - - - -
3DGenZ [54] 3DV’21 20.6 56.0 12.6 19.8 35.5 13.3 12.0 63.6 6.6
OpenScene† [57] CVPR’23 67.1 68.8 62.8 56.8 61.5 51.7 55.7 71.8 43.6
RegionPLC [79] CVPR’24 69.4 68.2 70.7 68.2 69.9 66.6 64.3 76.3 55.6

PLA (Baseline) [23] CVPR’23 65.3 68.3 62.4 55.3 69.5 45.9 53.1 76.2 40.8
AIDE 72.8 71.9 73.8 69.8 70.1 69.6 65.0 77.5 56.0

Fully-Supervised‡ 73.3 68.4 79.1 70.6 70.0 71.8 69.9 75.8 64.9
Table 2. Results on ScanNet. † and ‡ refer to numbers copied from He et al. [32] and Ding et al. [23]. Best in Bold.

Methods Venue
S3DIS nuScenes

B8/N4 B6/N6 B12/N3 B10/N5
hIoU mIoUB mIoUN hIoU mIoUB mIoUN hIoU mIoUB mIoUN hIoU mIoUB mIoUN

LSeg-3D‡ [45] ICLR’22 0.1 49.0 0.1 0 30.1 0 0.6 74.4 0.3 0 71.5 0
3DGenZ‡ [54] 3DV’21 8.8 50.3 4.8 9.4 20.3 6.1 1.6 53.3 0.8 1.9 44.6 1.0
3DTZSL‡ [15] WACV’20 8.4 43.1 4.7 3.5 28.2 1.9 1.2 21.0 0.6 6.4 17.1 3.9

PLA (Baseline) [23] CVPR’23 34.6 59.0 24.5 38.5 55.5 29.4 47.7 73.4 35.4 24.3 73.1 14.5
AIDE 42.2 60.3 32.4 42.5 58.3 34.4 62.2 75.8 52.7 48.4 66.4 38.1

Fully-Supervised‡ 67.5 61.4 75.0 65.4 59.9 72.0 73.7 76.6 71.1 74.8 76.8 72.8

Table 3. Results on S3DIS and nuScenes. ‡ refers to numbers copied from Ding et al. [23]. Best in Bold.

image encoders (ftext and fimg) and BART [44] for text sum-
marization. For a fair comparison, we use ViT-GPT2 [19] as
the image captioner fcap. Four trainable tokens are used in
adapting text encoders. The weight parameters are adapted
from our baseline [23].

4.2. Quantative Results

In this part, we present the results on ScanNet, S3DIS,
and nuScenes in Tabs. 2 and 3, respectively.
ScanNet (Tab. 2). AIDE demonstrates superior perfor-
mance across all metrics and splits, achieving hIoU of 72.8,
69.8, and 65.0 for B15/N4, B12/N7, and B10/N9 splits, re-
spectively. This represents a significant improvement over
PLA (Baseline), with increases of 7.5, 14.5, and 11.9 in
hIoU. Notably, AIDE also narrows the gap with the fully
supervised model, which represents the upper bound based
on the backbone and training strategies.
S3DIS and nuScenes (Tab. 3). Notably, AIDE achieves
the highest hIoU of 42.2 and 42.5 for B8/N4 and B6/N6
splits among various zero-shot learning-based and open-
vocabulary segmentation methods, respectively, on S3DIS.
Compared to our baseline, PLA, AIDE improves hIoU by
7.6 and 4.0 for each split. Improvements can also be ob-
served on the outdoor dataset, nuScenes, as AIDE improves
the hIoU from 47.7 and 24.3 to 62.2 and 48.4 on two differ-
ent splits, showing the superiority of AIDE.

4.3. Ablation Studies

In this part, we present the ablation studies on the effects
of two proposed modules (Tab. 4), hyperparameters (Tabs. 5
and 6), and the choice of text encoders (Tab. 7). Due to the
space limitation, ablation studies on the choice of temper-
atures (Tab. 12 and Fig. 4), and the importance of aligning
with image space (Tab. 16) are deferred to the Appendix.
All experiments are conducted on ScanNet (B15/N4).
Impact of proposed modules (Tab. 4). Notably, the in-
troduction of adaptive segmentation module alone improves
hIoU from 65.3 to 66.3, and mIoUB from 68.3 to 70.2, illus-
trating the efficacy in adapting the text encoders. “Caption
Best” and “Caption Sampling” refer to using temperature-
based generation and then selecting the best-aligned cap-
tions or captions sampled by the CLIP-rewarded sampling
(the CLIP-rewarded alignment module). Specifically, while
“Caption Best” improves hIoU to 68.9, “Caption Sampling”
further boosts hIoU to 70.3 from 65.3. It underscores the
importance of well-designed captioning techniques in im-
proving alignment with the text encoder. Combining two
modules together reaches the highest results. Specifically,
combining the adaptive segmentation module with “Cap-
tion Best” achieves a hIoU of 70.4, while integrating it with
“Caption Sampling” remarkably advances hIoU, mIoUB,
and mIoUN to 72.8, 71.9, and 73.8, respectively.
Numbers of learnable tokens. To understand how the
length of (deep) learnable tokens impacts performance, we



Adaptive Caption ScanNet(B15/N4)
Segmentation Best Sampling hIoU mIoUB mIoUN

65.3 68.3 62.4

✓ 66.3 70.2 62.8
✓ 68.9 69.6 68.2

✓ 70.3 69.9 70.6

✓ ✓ 70.4 71.0 69.9
✓ ✓ 72.8 71.9 73.8

Fully-Supervised 73.3 68.4 79.1

Table 4. Ablation studies on different modules of AIDE. “Adap-
tive Segmentation” refers to the adaptive segmentation mod-
ule. “Caption Selection” and “Caption Sampling” refer to using
temperature-based generation and then selecting the best-aligned
captions or sampling captions based on their similarity to the im-
ages (CLIP-rewarded alignment module).

# of Learnable Prompts ScanNet (B15/N4)
hIoU mIoUB mIoUN

0 (Baseline) 65.3 68.3 62.4

2 71.9 70.9 72.9
4 72.8 71.9 73.8
8 71.8 72.2 71.0

16 71.2 72.4 70.0

Fully-Supervised 73.3 68.4 79.1
Table 5. Ablation studies on different numbers of learnable tokens
of AIDE on ScanNet (B15/N4).

conduct a series of experiments as shown in Tab. 5. It
is clear that increasing the number of learnable tokens
from the baseline (zero prompts) significantly enhances the
model’s performance across all metrics (hIoU, mIoUB, and
mIoUN ). The optimal point is achieved with four learnable
tokens, with the highest hIoU and mIoUN of 72.8 and 73.8.
However, further increasing the number of prompts to 8 or
16 leads to a slight performance decline, which might be
due to potential overfitting on seen categories.
Number of captions Nca. While the temperature used in
caption generation affects the diversity of the generated cap-
tions (Tab. 12), the number of captions (samples) gener-
ated for each temperature also matters. Thus, to under-
stand the impact, we vary the number of samples for each
temperature and present the results in Tab. 6. Notably, the
peak performance is observed at 30 captions, with hIoU,
mIoUB, and mIoUN of 72.8, 71.9, and 73.8. Also, we ob-
serve consistent improvement when increasing the number
of samples from 1 to 30, underscoring the value of leverag-
ing more descriptive and diverse captions to enhance per-
formance. However, it also illustrates a diminishing return
beyond this optimal point, as evidenced by a decrease in all
metrics when the number of captions is further increased to
50. Noisy caption generation might be the reason behind

# of Generated Captions Ncap
ScanNet (B15/N4)

hIoU mIoUB mIoUN

1 (Baseline) 65.3 68.3 62.4

10 71.9 71.3 72.5
20 72.7 72.5 73.0
30 72.8 71.9 73.8
50 70.2 69.6 70.8

Fully-Supervised 73.3 68.4 79.1

Table 6. Ablation studies on different numbers of captions of
AIDE for each temperature.

Text Encoder ScanNet (B15/N4)
hIoU mIoUB mIoUN

AIDE w. CLIP [59] 72.8 71.9 73.8
AIDE w. ImageBind [27] 71.0 70.4 71.7
AIDE w. PointBind [30] 70.0 70.7 69.4

Fully-Supervised 73.3 68.4 79.1
Table 7. Ablation studies on using different text encoders of AIDE

on ScanNet (B15/N4).

this phenomenon. As generating over 30 captions per tem-
perature will result in a total of more than 120 captions and
the training epochs are 128, the majority of these captions
cannot be effectively utilized during training. It suggests
that an optimal balance between the diversity and quality of
captions is crucial.
Choice of text encoder. In this part, we compare the perfor-
mance using three text encoders from multimodal founda-
tional models, e.g., CLIP [59], ImageBind [27], and Point-
Bind [30], as shown in Tab. 7. The results indicate that the
CLIP text encoder outperforms others across all metrics,
with the highest hIoU (72.8), mIoUB (71.9), and mIoUN

(73.8). This superiority likely stems from CLIP’s adeptness
at aligning visual and textual representations, a critical fac-
tor in open-vocabulary segmentation tasks.

4.4. Qualitative Results—Generalization

To illustrate the effectiveness of our proposed AIDE, we
present qualitative results on analyzing the open-vocabulary
ability to segment point clouds with the synonyms and hy-
pernyms of classes (Tab. 8) and the zero-shot domain trans-
fer ability (Tab. 9). The interpretation of learnable prompts
in the input space (Tab. 15), the quality of generated cap-
tions (Fig. 5), and generalization on instance segmentation
(Tab. 17) are deferred to the Appendix.
Generalization on segmenting with synonyms and hy-
pernyms of classes. VLMs have demonstrated a remark-
able capacity for associating semantically similar words. To
understand how well this ability is transferred to 3D models,
we evaluate AIDE and baseline’s performance in recogniz-
ing synonyms and hypernyms of original class names, as



Methods hIoU mIoUB mIoUN IoU on Base Categories IoU on Novel

floor bed window sink desk toilet

Original Class Names
Baseline 0.645 0.679 0.615 0.950 0.808 0.617 0.571 0.449 0.594
AIDE 0.728 0.719 0.738 0.979 0.818 0.658 0.656 0.513 0.862

Synonyms
Baseline 0.289 0.207 0.479 0.138 0.566 0.346 0.000 0.242 0.464
AIDE 0.340 0.243 0.568 0.352 0.739 0.326 0.000 0.304 0.746

Hypernyms
Baseline 0.311 0.230 0.478 0.000 0.401 0.344 0.000 0.425 0.143
AIDE 0.364 0.264 0.588 0.000 0.637 0.378 0.000 0.474 0.464

Table 8. Open-vocabulary semantic segmentation results on Scan-
Net (B15/N4) using the original class names, their synonyms, and
hypernyms. The full table is presented in Tab. 14, while the syn-
onyms and hypernyms of class names are presented in Tab. 13.

Train Dataset Metrics (Baseline/AIDE)
hIoU mIoUB mIoUN

Test Dataset: S3DIS (B8/N4)
ScanNet (B15/N4) 32.1/35.9 31.6/39.9 32.6/33.8
ScanNet (B12/N7) 22.2/25.8 25.0/23.3 19.9/28.9
ScanNet (B10/N9) 24.7/31.0 30.5/38.9 20.7/25.7

Test Dataset: ScanNet (B15/N4)
S3DIS (B8/N4) 10.5/11.9 15.0/15.0 8.1/9.9
S3DIS (B6/N6) 5.9/7.5 7.1/7.6 5.1/7.5

Table 9. Zero-shot transfer ability of baseline and AIDE. We train
models on ScanNet (B15/N4) or S3DIS (B8/N4) and test them on
another. Best in bold.

# of Trainable Parameters # of Parameters Throughput (Scene/s)

Baseline 11,001,346 74,138,114 7.58
AIDE 11,027,970 (0.2% ↑) 74,164,738 (0.03% ↑) 7.58

Table 10. Comparison of parameters and throughput between the
baseline and AIDE.

shown in Tab. 8. Results show that AIDE consistently sur-
passes the baseline across various metrics for most of the
classes. When using synonyms and hypernyms, both meth-
ods experience a drop in performance compared to original
class names, which is reasonable due to the increased dif-
ficulty in matching these broader or alternative terms with
points precisely. On the other side, AIDE still maintains a
lead over the baseline, demonstrating its robustness to vari-
ations in vocabulary. The drop is mostly in the synonyms
category, especially with base categories, e.g., “floor”, “cur-
tain”, and “sink”. It also highlights the challenge of seg-
mentation with hypernyms, as the baseline and AIDE have
(near-)zero IoU for several categories, indicating difficulty
in generalizing to broader category terms.

Generalization on zero-shot domain transfer. To under-
stand the zero-shot domain transfer ability of AIDE, we
conduct experiments where models are trained on either
ScanNet (B15/N4) or S3DIS (B8/N4) and tested on the
other, as shown in Tab. 9. In every setting, AIDE consis-
tently outperforms the baseline on hIoU, underscoring its
superior generalization capability. Notably, when training
on ScanNet (B15/N4) and testing on S3DIS (B8/N4), AIDE

Baseline
<latexit sha1_base64="8k3CRILvDLJXW17zWbLpHOQz36M=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WP9OHisYD+gDWWznbRLN5u4OymW0N/hxYMiXv0x3vw3btsctPXBwOO9GWbm+bHgGh3n28qtrK6tb+Q3C1vbO7t7xf2Dho4SxaDOIhGplk81CC6hjhwFtGIFNPQFNP3hzdRvjkBpHskHHMfghbQvecAZRSN5HYQn1Cy94rcw6RZLTtmZwV4mbkZKJEOtW/zq9CKWhCCRCap123Vi9FKqkDMBk0In0RBTNqR9aBsqaQjaS2dHT+wTo/TsIFKmJNoz9fdESkOtx6FvOkOKA73oTcX/vHaCwaWXchknCJLNFwWJsDGypwnYPa6AoRgbQpni5labDaiiDE1OBROCu/jyMmmcld1KuXJ/XqpeZ3HkyRE5JqfEJRekSu5IjdQJI4/kmbySN2tkvVjv1se8NWdlM4fkD6zPHwfdkkk=</latexit>
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Figure 3. Qualitative results of segmentation compared between
baseline and AIDE.

achieves significant improvements in all metrics, with hIoU,
mIoUB, and mIoUN increasing from 32.1, 31.6, and 32.6 to
35.9, 39.9, and 33.8, respectively. Similar patterns are ob-
served with huge gaps between the baseline and AIDE in
different settings. These results underscore the importance
of the CLIP-rewarded alignment and adaptive segmentation
modules in enhancing open-vocabulary segmentation mod-
els’ transferability to novel categories and scenarios.
Visualization. To better understand how our AIDE excels
at segmenting seen and unseen objects, we visualize seg-
mentation results in Figs. 3 and 6. It is obvious that, on
both the seen and unseen classes (chair and toilet), AIDE
better segments them from other objects compared with the
baseline.
Parameters and throughput comparison. We also in-
clude a parameter and throughput analysis in Tab. 10. We
notice that, as AIDE only introduces sets of trainable tokens
to adapt the text encoder, the additional parameters and la-
tency are marginal compared with our baseline model.

5. Conclusion

We introduced AIDE to collect well-aligned 3D-vision-
and-text multimodal data and efficiently adapt 2D VLMs
for 3D semantic segmentation, thereby enhancing the mod-
els’ generalization capabilities. AIDE has two key com-
ponents: (i) the CLIP-rewarded alignment module, us-
ing temperature-based caption generation combined with
CLIP-rewarded sampling to generate well-aligned 3D-
vision-and-text data, and (ii) adaptive segmentation mod-
ule, adding a small set of learnable tokens in both the input
space and each layer of text encoder to adapt the VLM text
encoder to the 3D setting. Our experimental results demon-
strated AIDE’s superiority over previous methods, indicat-
ing the importance of high-quality data generation and the
adaptation of text encoders.
Limitation. While we employ scene-level, view-level, and
entity-level alignments, an even more fine-grained align-
ment could achieve better alignment [9,41,52,62,87]. Cur-
rently, the point-wise classification method is limited to co-
sine similarity matching. In the future, an advanced text-3D
fusion method should be applied to integrate multimodal in-
formation for segmentation.
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Appendix of AIDE: Improving 3D Open-Vocabulary Semantic
Segmentation by Aligned Vision-Language Learning

In the Appendix, we present additional details on the model
and experimental results in Appendix C including ablation
studies, qualitative results (e.g., generated captions), and
generalization to instance segmentation. Prompt templates
used for producing Tab. 1b are detailed in Appendix D.

A. Societal Impact
In this paper, we propose a novel 3D open-vocabulary

segmentation framework aimed at recognizing countless
classes of objects to improve the generalization of segmen-
tation models. We did not identify any obvious negative so-
cietal impacts. Instead, we hope our model can contribute
to the development of reliable and generalizable machine
learning models and advance progress in this area.

B. Model Details
B.1. Hierachical Point Cloud-Text Alignment

After obtaining the paired data, we are ready to align text
encoders with 3D models. As suggested by previous 2D
VLMs work [9, 23, 41, 52, 62, 87], hierarchical alignment,
e.g., region-level, image-level, and pixel-level alignment, is
essential to cross-modal learning. To this end, we employ
hierarchical 3D-text alignment [23,32] to enable rich cross-
modal association. Specifically, we have scene-, view-, and
entity-level alignments. For scene-level alignment (coarse-
grained), we first obtain a comprehensive scene-level cap-
tion tscene with a text summarization model [44] to aggre-
gate view-level captions T view. Then, we directly maximize
the similarity between the entire point clouds and the scene-
level caption as,

ℓscene
align = ℓpdc(f3D(P ), ftext(t

scene)) ,

where ℓpdc is the point-discriminative contrastive loss de-
tailed below (Eq. (6)). For view-level alignment, we max-
imize the similarity between the points P̂ view

i visible in
an image (view) and its corresponding view-level caption
T view
i ,

ℓview
align =

∑
i∈[|T view|]

ℓpdc

(
f3D

(
P̂ view
i

)
, ftext

(
T view
i

))
.

For entity-level alignment, following PLA [23], we get
nouns as the entity-level captions T entity of each view by em-
ploying NLTK [5] on the view-level captions T view. Next,
to associate a specific set of points (instead of the view-level
set of points) with the entity-level captions, by the set dif-
ferences and intersections of two adjacent views i and j, we

obtain two entity-level pairs,

(P̂ entity
i\j , T̂ entity

i\j ), (P̂ entity
i∩j , T̂ entity

i∩j ),∀i, j ∈ [|T view|] ,
s.t., σmin < |P̂ entity

i∗j | < σmax min(|P̂ view
i |, |P̂ view

j |),
|T̂ entity

i∗j | > 0,∀∗ ∈ {\,∩} ,

where \ and ∩ represent the set difference and intersec-
tion, σmin and σmax are two hyperparameters, P̂ entity

i∗j =

P̂ view
i ∗ P̂ view

j , and T̂ entity
i∗j = T entity

i ∗T entity
j . In total, we have

2
(|T view|

2

)
entity-level associations, and now, we are ready to

perform the entity-level alignment as,

ℓentity
align =

∑
i∈[2(|T

view|
2 )]

ℓpdc

(
f3D

(
P̂ entity
i

)
, ftext

(
T̂ entity
i

))
.

Summarizing three losses, we have the hierarchical 3D-text
alignment loss as,

ℓalign = αsceneℓscene
align + αviewℓview

align + αentityℓentity
align , (5)

where αscene, αview, and αentity are weighted parameters.

B.2. Point-Discriminative Contrastive Learning

To maximize the similarity between the sets of point
features and caption features, following previous stud-
ies [23, 79], we employ the point-discriminative contrastive
loss [79] ℓpdc instead of the vanilla contrastive loss. Specifi-
cally, to encourage point-wise alignment, instead of group-
ing different-level point cloud features by mean pooling
and applying contrastive loss, we first calculate point-wise
contrastive-style activations and then group these activa-
tions,

ℓpdc(F
P , FT ) =

−∑
i∈[NFP ] ln

exp(FP
i FT⊤)

exp(FP
i FT⊤)+

∑
j exp(FP

i F̂T⊤
j )

NFP

,

(6)
where FP

i represents the i-th point’s feature, NFP is the
number of points in FP ∈ RNFP ×D, and F̂T ∈ R1×D

represents captions in the same training batch.

C. Experiments
C.1. Benchmarks, Category Partition, and Base-

lines

Benchmarks. Here we present the details of two represen-
tative benchmarks we use in our experiments.
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Figure 4. The number of most-aligned captions generated by dif-
ferent temperatures for each image. We use temperatures of 0.5,
1.0 (standard temperature), 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 10.0, 15.0,
20.0, 30.0, 50.0, and 100.0 for generating diverse captions.

ScanNet [20] consists of 1,613 scenes (1,201 scenes for
training, 312 scenes for validation, and 100 for testing)
densely annotated in 20 classes. We discard the “otherfurni-
ture” class and split the rest 19 classes into three partitions
for semantic segmentation, as shown in Tab. 11.

S3DIS [2] contains 271 scans across 6 building areas and
13 categories. Following previous work [23, 58], we treat
the 5-th area as the validation split and other areas as the
training split. We discard the “clutter” class and partition
the rest 12 classes into two partitions for both semantic seg-
mentation and instance segmentation, as demonstrated in
Tab. 11.

nuScenes [7] comprises 1000 driving scenes. 850 scenes
of them form the training and validation set, and the other
150 scenes are for testing. It contains 16 semantic classes
for the LiDAR semantic segmentation task. The scene is
scanned by 32-line LiDAR, which is different from the pre-
vious two datasets.
Baselines. Following PLA [23], we use LSeg-3D [45]
(UNet as the backbone, vision-language adapter imple-
mented by MLP, and the CLIP [59] ViT-B/16 text encoder).
For 3DGenZ [54] and 3DTZSL [15], we use the same set-
ting with PLA [23].
Implementation details. We use 4 learnable tokens in the
input space and each layer of the text encoder for enabling
the adaptive segmentation module. For each temperature,
we generate 30 captions enabling the sampling.

C.2. Ablation Studies

In this part, we extend our ablation studies to the choice
of temperatures (Tab. 12 and Fig. 4) and the importance of
aligning with image space (Tab. 16).
Which temperature generates the captions that are

closest to the corresponding 3D/image data? To bet-
ter understand the impact of varying temperatures in
generating paired 3D-(image)-text data, we evaluate the
similarity between generated captions and their corre-
sponding images. Specifically, we identify the temperature
setting that produces the most aligned captions for each
image, which we refer to as the “winner” temperature,
and then count the time each temperature “wins”. In our
experiments, we use fourteen different temperatures, i.e.,
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 10.0, 15.0, 20.0, 30.0,
50.0, 100.0}, and generate 30 captions for each tempera-
ture. The results are summarized in Fig. 4, which indicates
that temperatures of 4.0 and 5.0 frequently emerge as
winners. This observation aligns with the fact that higher
temperatures tend to introduce more variability, resulting
in noisier captions, whereas lower temperatures lead to
more deterministic and potentially less diverse captions.
Therefore, a moderate temperature setting is optimal
for generating the best-aligned captions and aligned
3D-(image)-text data.
Impact of numbers of temperatures used for gener-
ation. To understand how the diversity of temperatures
used for generating captions affects the performance, we
employ four different temperature sets and evaluate the
performance of AIDE on ScanNet (B15/N4) as shown in
Tab. 12. A diverse set of temperatures significantly en-
hances AIDE’s performance over the baseline, which only
uses one temperature, i.e., 1.0, with the optimal range being
{0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0}, which slightly outper-
forms other settings with hIoU, mIoUB, and mIoUN scores
of 73.0, 71.7, and 74.3, respectively. This finding aligns
perfectly with the observations in Fig. 4 as temperatures
4.0 and 5.0 yield the most wins. Furthermore, increasing
the temperature diversity further, even up to a wide range
of {0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0, 20.0, 30.0,
50.0, 100.0}, results in diminishing returns, indicating a
threshold beyond which additional temperature variance
does not contribute to, and may even detract from per-
formance. That might be because most captions will not
be utilized even once throughout the training process.
As the number of training epochs is 128, employing 14
temperatures results in a total of 420 captions, with most
captions having a low probability of being sampled.

C.3. Qualitative Results

In this part, we extend our qualitative results on the inter-
pretation of learnable prompts in the input space (Tab. 15),
the quality of generated captions (Fig. 5), and generaliza-
tion on instance segmentation (Tab. 17).
Generated captions. To understand how the proposed
CLIP-rewarded alignment module improves the quality of
generated 3D-text data, we randomly choose some samples
of captions presented in Fig. 5. It is obvious that captions



Partition Base Categories Novel Categories

ScanNet

B15/N4 wall, floor, cabinet, bed, chair, table, door, window, sofa, bookshelf, desk, toilet
picture, counter, curtain, refrigerator, showercurtain, sink, bathtub

B12/N7 wall, floor, cabinet, sofa, door, window, counter, bed, chair, table, bookshelf, picture, sink, bathtubdesk, curtain, refrigerator, showercurtain, toilet

B10/N9 wall, floor, cabinet, bed, chair, sofa, table, door, window, curtain bookshelf, picture, counter, desk, refrigerator,
showercurtain, toilet, sink, bathtub

S3DIS

B8/N4 ceiling, floor, wall, beam, column, door, chair, board window, table, sofa, bookcase

B6/N6 ceiling, wall, beam, column, chair, bookcase floor, window, door, table, sofa, board

Table 11. Category partitions for open-vocabulary semantic segmentation on ScanNet and S3DIS.

Temperatures used for Caption Generation ScanNet (B15/N4)
hIoU mIoUB mIoUN

{1.0} (Baseline) 65.3 68.3 62.4

{0.5, 1.0, 1.5, 2.0} 72.8 71.9 73.8
{0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0} 73.0 71.7 74.3

{0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0, 20.0, 30.0} 72.6 71.7 73.6
{0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 10.0, 15.0, 20.0, 30.0, 50.0, 100.0} 71.5 71.4 71.6

Fully-Supervised 73.3 68.4 79.1

Table 12. Ablation studies of different temperatures used for caption generation of AIDE.

ScanNet
Class Names wall floor cabinet bed chair sofa table door window bookshelf
Synonyms palisade deck locker bunk bench couch board exit window bookrack
Hypernyms embankment compartment - - seat - - entrance - shelf

Class Names picture counter desk curtain refrigerator showercurtain toilet sink bathtub
Synonyms figure - escritoire drapery icebox - bathroom - -
Hypernyms image - - - - - room - -

S3DIS
Class Names ceiling floor wall beam column window door table chair sofa
Synonyms roof deck palisade - - - exit board bench couch
Synonyms cap compartment embankment - - - entrance - seat -

Class Names bookcase board
Synonyms - plank
Hypernyms - -

Table 13. Synonyms and hypernyms of class names on ScanNet and S3DIS used for generating class embeddings. For classes without
suitable synonyms or hypernyms, we use the original class name as their synonyms and hypernyms and mark “-” in the table.

generated by lower temperatures (closer to the baseline of
1.0) might be more generic and closely tied to the most ap-
parent elements in the images. In contrast, higher temper-
atures could lead to more diverse and potentially creative
interpretations of the same visual content. Moreover, high
temperature always leads to informative generated captions,
e.g., “a wood desk topped with a computer and a yellow and

white striped arm chair in front of the computer and the desk
is full of clutter next to a very messy desk” for the second
example. And high temperatures can capture key informa-
tion too as 2.0 captures “blurry” in the second image while
1.0 can barely capture that. Meanwhile, as captions gener-
ated by higher temperatures are more informative, they ex-
hibit higher similarity to the images than the baseline setting



Similarity Temperatures Captions
0.3748
0.3682
0.3380

0.2219
…

a guitar is sitting on the floor next to a closet4.0
1.5
2.0

Baseline (1.0) a black and white cat standing next to a door

a small closet with a guitar and a skateboard
a guitar is sitting on the floor next to a door

……

0.4023
0.3784
0.3237

0.3157
…

a blurry picture of a cluttered office space2.0
2.0
4.0

Baseline (1.0) a cluttered desk with a computer on it

a wood desk topped with a computer and a yellow and white striped arm chair in front of the computer 
and the desk is full of clutter next to a very messy desk

a blurry picture of a cluttered computer desk with many items on the desk

……

0.3833
0.3520
0.3433

0.2947
…

a black jacket and black pants hanging from a rack in a closet1.5
2.0
5.0

Baseline (1.0) a black and white photo of a black and white closet

a black jacket resting against a wall while a dog stands by a backboard to hang inside of a wall with cables next to it is hanging on two handles in a garage window with two 
open shelves on the ground near a metal fence and some hanging towels hanging beside it and hanging towels hanging in a ceiling rack on some

a black jacket is hanging on the handlebars of a black jacket hanging on a rope in a closet

……

0.3810
0.3710
0.3596

0.2960
…

a white towel hanging from a rack in a closet4.0
0.5
1.5

Baseline (1.0) a bathroom with a bunch of towels hanging on the wall

a white towel hanging in a bathroom next to a white shelf full of clothes and other items

a white towel hanging in a closet with towels on the shelves

……

Images

Figure 5. Samples of captions generated at different temperatures and their cosine similarity to the corresponding images. We notice that a
high temperature leads to informative and also noisy caption generation.
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<latexit sha1_base64="8k3CRILvDLJXW17zWbLpHOQz36M=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WP9OHisYD+gDWWznbRLN5u4OymW0N/hxYMiXv0x3vw3btsctPXBwOO9GWbm+bHgGh3n28qtrK6tb+Q3C1vbO7t7xf2Dho4SxaDOIhGplk81CC6hjhwFtGIFNPQFNP3hzdRvjkBpHskHHMfghbQvecAZRSN5HYQn1Cy94rcw6RZLTtmZwV4mbkZKJEOtW/zq9CKWhCCRCap123Vi9FKqkDMBk0In0RBTNqR9aBsqaQjaS2dHT+wTo/TsIFKmJNoz9fdESkOtx6FvOkOKA73oTcX/vHaCwaWXchknCJLNFwWJsDGypwnYPa6AoRgbQpni5labDaiiDE1OBROCu/jyMmmcld1KuXJ/XqpeZ3HkyRE5JqfEJRekSu5IjdQJI4/kmbySN2tkvVjv1se8NWdlM4fkD6zPHwfdkkk=</latexit>

AiDe

Baseline
<latexit sha1_base64="8k3CRILvDLJXW17zWbLpHOQz36M=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WP9OHisYD+gDWWznbRLN5u4OymW0N/hxYMiXv0x3vw3btsctPXBwOO9GWbm+bHgGh3n28qtrK6tb+Q3C1vbO7t7xf2Dho4SxaDOIhGplk81CC6hjhwFtGIFNPQFNP3hzdRvjkBpHskHHMfghbQvecAZRSN5HYQn1Cy94rcw6RZLTtmZwV4mbkZKJEOtW/zq9CKWhCCRCap123Vi9FKqkDMBk0In0RBTNqR9aBsqaQjaS2dHT+wTo/TsIFKmJNoz9fdESkOtx6FvOkOKA73oTcX/vHaCwaWXchknCJLNFwWJsDGypwnYPa6AoRgbQpni5labDaiiDE1OBROCu/jyMmmcld1KuXJ/XqpeZ3HkyRE5JqfEJRekSu5IjdQJI4/kmbySN2tkvVjv1se8NWdlM4fkD6zPHwfdkkk=</latexit>

AiDe

Baseline
<latexit sha1_base64="8k3CRILvDLJXW17zWbLpHOQz36M=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WP9OHisYD+gDWWznbRLN5u4OymW0N/hxYMiXv0x3vw3btsctPXBwOO9GWbm+bHgGh3n28qtrK6tb+Q3C1vbO7t7xf2Dho4SxaDOIhGplk81CC6hjhwFtGIFNPQFNP3hzdRvjkBpHskHHMfghbQvecAZRSN5HYQn1Cy94rcw6RZLTtmZwV4mbkZKJEOtW/zq9CKWhCCRCap123Vi9FKqkDMBk0In0RBTNqR9aBsqaQjaS2dHT+wTo/TsIFKmJNoz9fdESkOtx6FvOkOKA73oTcX/vHaCwaWXchknCJLNFwWJsDGypwnYPa6AoRgbQpni5labDaiiDE1OBROCu/jyMmmcld1KuXJ/XqpeZ3HkyRE5JqfEJRekSu5IjdQJI4/kmbySN2tkvVjv1se8NWdlM4fkD6zPHwfdkkk=</latexit>

AiDe

Baseline
<latexit sha1_base64="8k3CRILvDLJXW17zWbLpHOQz36M=">AAAB9HicbVBNS8NAEN3Ur1q/qh69BIvgqSQi1WP9OHisYD+gDWWznbRLN5u4OymW0N/hxYMiXv0x3vw3btsctPXBwOO9GWbm+bHgGh3n28qtrK6tb+Q3C1vbO7t7xf2Dho4SxaDOIhGplk81CC6hjhwFtGIFNPQFNP3hzdRvjkBpHskHHMfghbQvecAZRSN5HYQn1Cy94rcw6RZLTtmZwV4mbkZKJEOtW/zq9CKWhCCRCap123Vi9FKqkDMBk0In0RBTNqR9aBsqaQjaS2dHT+wTo/TsIFKmJNoz9fdESkOtx6FvOkOKA73oTcX/vHaCwaWXchknCJLNFwWJsDGypwnYPa6AoRgbQpni5labDaiiDE1OBROCu/jyMmmcld1KuXJ/XqpeZ3HkyRE5JqfEJRekSu5IjdQJI4/kmbySN2tkvVjv1se8NWdlM4fkD6zPHwfdkkk=</latexit>

AiDe

Figure 6. Qualitative results of segmentation compared between baseline and AIDE.

(1.0). This variability underscores the importance of tem-
perature in controlling the trade-off between diversity and
relevance of generated captions, a critical aspect in tasks re-
quiring a nuanced understanding of visual content, such as
semantic segmentation, object recognition, and image cap-
tioning in computer vision.

Synonyms and hypernyms. Here, we present the syn-
onyms and hypernyms of different classes in Tab. 13 used
for calculating the results in Tabs. 8 and 14. We use Word-

Net [25] and Cambridge Dictionary2 to select appropriate
synonyms and hypernyms to avoid confusion. For classes
without suitable synonyms or hypernyms, we use the origi-
nal class name as their synonyms and hypernyms and mark
“-” in the table.
The meaning of learned prompts. To understand the
meaning of learned prompts, we calculate the cosine sim-
ilarity between the learned prompts in the input space and
the human vocabulary (subwords in CLIP’s vocabulary)

2https://dictionary.cambridge.org/.

https://dictionary.cambridge.org/


Methods hIoU mIoUB mIoUN IoU on Base Categories

wall floor cabinet bed chair table door window

Original Class Names
Baseline 0.645 0.679 0.615 0.839 0.950 0.638 0.808 0.880 0.705 0.595 0.617
AIDE 0.728 0.719 0.738 0.874 0.979 0.684 0.818 0.916 0.744 0.637 0.658

Synonyms
Baseline 0.289 0.207 0.479 0.262 0.138 0.029 0.566 0.292 0.004 0.155 0.346
AIDE 0.340 0.243 0.568 0.166 0.352 0.012 0.739 0.550 0.007 0.269 0.326

Hypernyms
Baseline 0.311 0.230 0.478 0.000 0.000 0.418 0.401 0.528 0.140 0.058 0.344
AIDE 0.364 0.264 0.588 0.001 0.000 0.477 0.637 0.326 0.183 0.190 0.378

Methods IoU on Base Categories IoU on Novel Categories

picture counter curtain refrigerator showercurtain sink bathtub sofa bookshelf desk toilet

Original Class Names
Baseline 0.312 0.591 0.697 0.488 0.652 0.571 0.837 0.734 0.681 0.449 0.594
AIDE 0.349 0.646 0.733 0.561 0.676 0.656 0.854 0.821 0.756 0.513 0.862

Synonyms
Baseline 0.005 0.261 0.000 0.079 0.592 0.000 0.381 0.686 0.524 0.242 0.464
AIDE 0.002 0.196 0.000 0.249 0.493 0.000 0.280 0.643 0.577 0.304 0.746

Hypernyms
Baseline 0.040 0.461 0.506 0.055 0.339 0.000 0.165 0.724 0.621 0.425 0.143
AIDE 0.035 0.418 0.537 0.031 0.489 0.000 0.255 0.750 0.666 0.474 0.464

Table 14. Open-vocabulary semantic segmentation results on ScanNet (B15/N4) using the original class names, their synonyms, and
hypernyms. The synonyms and hypernyms of class names are presented in the Appendix.

presented in Tab. 15. It shows that both models tend to
align with basic English words such as articles (“a”, “an”,
“the”) and pronouns (“his”, “my”). Notably, the learned
prompts on both ScanNet and S3DIS exhibit high similarity
with “scene”. On the other side, learned prompts of differ-
ent benchmarks tend to have different composed meanings
as the top 2 - top 5 ranked words are different. It reflects the
AIDE’ capacity to approximate human-like linguistic struc-
tures and adaptation to domain-specific linguistic contexts.

Visualization. We further visualize more examples in
Fig. 6. It is obvious that, compared with our baseline (PLA),
AIDE has a better segmentation on both the seen and unseen
classes. The desk on the bottom left, the toilet on the bot-
tom right, the chair on the top right, and the bookshelf on
the top left are more clear than the baseline model.

C.4. Aligning 3D with Images

In this paper, we focus on aligning the captions with 3D
point cloud features, whereas another line of research [32,
57] aims at aligning 3D point cloud features with the corre-
sponding images.

To have a fair comparison with these methods and to
augment AIDE with image alignment capabilities, we im-
plement view-level image alignment minimizing the PDC

loss,

ℓview, image
align =

∑
i∈[|Iview|]

ℓpdc

(
f3D

(
P̂ view
i

)
, ftext

(
Iview
i

))
,

(7)
where Iview represents the images corresponding to a scene.
For each image Iview

i , we select the points visible in that im-
age, mapped with poses and other parameters, as the paired
point set P̂ view

i . This method is noted as “AIDE + View-
Level 3D-Image Alignment” as shown in Tab. 16.

The table illustrates a compelling comparison between
AIDE and other image-based methods [32, 57]. Results
indicate that our proposed AIDE, even without additional
view-level 3D-image alignment, achieves better results,
specifically in mIoUN , demonstrating its robustness and ef-
fectiveness. With the introduction of view-level 3D-image
alignment, AIDE outperforms UniM-OV3D (3D-Text) in
all metrics, illustrating the effectiveness of precise im-
age alignment strategies in enhancing segmentation accu-
racy. Furthermore, integrating view-level 3D-image align-
ment into our framework demonstrates not only the model’s
adaptability but also its ability to effectively utilize visual
cues from aligned images for improved semantic alignment.

C.5. Generalization to Instance Segmentation

To understand the possibility of extending AIDE to in-
stance segmentation, following previous methods [23, 67],



ScanNet

Token1
Similarity 0.8044 0.5539 0.4234 0.3598 0.3563 0.3497 0.3366 0.3357 0.3108 0.3102
Word a an the his my some this yours ans s

Token2
Similarity 0.7393 0.4705 0.2389 0.2282 0.2209 0.213 0.208 0.1974 0.1966 0.1962
Word scene scenes scen scenery moment stage sight set cameo display

Token3
Similarity 0.7616 0.4286 0.4227 0.3786 0.3687 0.3614 0.3614 0.3415 0.3327 0.3264
Word of to for by from in with on at ,

Token4
Similarity 0.6825 0.4426 0.2749 0.2704 0.2644 0.2624 0.2574 0.2538 0.2417 0.2387
Word a an the your my and as in any every

S3DIS

Token1
Similarity 0.4468 0.3206 0.2098 0.2067 0.206 0.2036 0.2012 0.1966 0.1899 0.1892
Word a an ah his need sus put some had took

Token2
Similarity 0.3924 0.2307 0.2305 0.1852 0.1804 0.1771 0.1755 0.1755 0.1625 0.1621
Word scene scenes sleet steady dumped heavens haz smashes pavement sites

Token3
Similarity 0.3181 0.2087 0.1972 0.1919 0.1911 0.1865 0.1826 0.1778 0.1764 0.1748
Word of s in from and being into are you your

Token4
Similarity 0.3856 0.3002 0.2556 0.2413 0.2379 0.2343 0.23 0.2257 0.2217 0.2182
Word a an his my your you he us her me

Table 15. Similarity between learned prompts (tokens) in the input space and “human vocabulary” under use the cosine similarity. “Word”
refers to subwords in the CLIP’s vocabulary.

Method ScanNet (B15/N4)
hIoU mIoUB mIoUN

OpenScene† [57] 67.1 68.8 62.8
UniM-OV3D (3D-Text Only) [32] 62.1 66.2 56.4

AIDE 72.8 71.9 73.8
AIDE + View-Level 3D-Image Alignment 73.0 72.7 73.3

Fully-Supervised 73.3 68.4 79.1

Table 16. Ablation studies on using the image alignment and com-
parisons with image-based methods. † refers to numbers copied
from He et al. [32].

we introduce an instance localization head floc(·) for gener-
ating instance proposal and instance class prediction (de-
tails see S1.2 [23]). Specifically, instance proposals pps
are first generated by grouping the segmentation predic-
tion fseg(f3D(P )), offset head, and the point-wise features
f3D(P ). Next, with a TinyUNet and the class-agnostic seg
and score heads, perclass confidence for instance proposals
pps are generated with the pooled segmentation prediction

Methods S3DIS (B8/N4)
hAP50 mAPB

50 mAPN
50

LSeg-3D 0.5 58.3 0.3

Baseline 26.7 60.3 17.2
AIDE 34.5 61.9 23.9

Fully-Supervised 57.6 60.8 54.6

Table 17. Generalization of AIDE to instance segmentation on
S3DIS.

fseg(f3D(P )).
The results of LSeg-3D, our baseline (PLA), and AIDE

on instance segmentation on S3DIS (B8/N4) are shown
in Tab. 17. We utilize APB

50 and APN
50 and their har-

monic mean as evaluation metrics. Notably, AIDE demon-
strates superior performance across all metrics, achieving
hAP50, mAPB

50, and mAPN
50 of 34.5, 61.9, and 23.9, respec-

tively. This demonstrates AIDE’s effectiveness in handling



instance segmentation tasks, significantly improving upon
the baseline (26.7 in hAP50, 60.3 in mAPB

50, and 17.2 in
mAPN

50) and significantly closing the gap with the fully su-
pervised model, which leads with 57.6 in hAP50 and 54.6
in mAPN

50. This underscores AIDE’s potential to enhance
open-vocabulary instance segmentation capabilities, while
also indicating the need for further advancements to narrow
the significant gap with fully supervised methods.

D. Prompt Templates
In this section, we present the prompt templates used for

producing the results in Tab. 1b.
Identity. This prompt template is shown as follows,

{CLASS}
Simple. This prompt template is shown as follows,

a photo of a {CLASS}
LSeg.This prompt template is shown as follows,

a {CLASS} in a scene

Full-ImageNet. This prompt template uses the following
81 templates to generate text embedding for each class and
then do an average of 81 embeddings.

a bad photo of a {CLASS}
a photo of many {CLASS}
a sculpture of a {CLASS}
a photo of the hard to see {CLASS}
a low resolution photo of the {CLASS}
a rendering of a {CLASS}
graffiti of a {CLASS}
a bad photo of the {CLASS}
a cropped photo of the {CLASS}
a tattoo of a {CLASS}
the embroidered {CLASS}
a photo of a hard to see {CLASS}
a bright photo of a {CLASS}
a photo of a clean {CLASS}
a photo of a dirty {CLASS}
a dark photo of the {CLASS}
a drawing of a {CLASS}
a photo of my {CLASS}
the plastic {CLASS}
a photo of the cool {CLASS}
a close-up photo of a {CLASS}
a black and white photo of the {CLASS}
a painting of the {CLASS}
a painting of a {CLASS}
a pixelated photo of the {CLASS}
a sculpture of the {CLASS}

a bright photo of the {CLASS}
a cropped photo of a {CLASS}
a plastic {CLASS}
a photo of the dirty {CLASS}
a jpeg corrupted photo of a {CLASS}
a blurry photo of the {CLASS}
a photo of the {CLASS}
a good photo of the {CLASS}
a rendering of the {CLASS}
a {CLASS} in a video game
a photo of one {CLASS}
a doodle of a {CLASS}
a close-up photo of the {CLASS}
a photo of a {CLASS}
the origami {CLASS}
the {CLASS} in a video game
a sketch of a {CLASS}
a doodle of the {CLASS}
a origami {CLASS}
a low resolution photo of a {CLASS}
the toy {CLASS}
a rendition of the {CLASS}
a photo of the clean {CLASS}
a photo of a large {CLASS}
a rendition of a {CLASS}
a photo of a nice {CLASS}
a photo of a weird {CLASS}
a blurry photo of a {CLASS}
a cartoon {CLASS}
art of a {CLASS}
a sketch of the {CLASS}
a embroidered {CLASS}
a pixelated photo of a {CLASS}
itap of the {CLASS}
a jpeg corrupted photo of the {CLASS}
a good photo of a {CLASS}
a plushie {CLASS}
a photo of the nice {CLASS}
a photo of the small {CLASS}
a photo of the weird {CLASS}
the cartoon {CLASS}
art of the {CLASS}
a drawing of the {CLASS}
a photo of the large {CLASS}
a black and white photo of a {CLASS}
the plushie {CLASS}
a dark photo of a {CLASS}
itap of a {CLASS}
graffiti of the {CLASS}
a toy {CLASS}
itap of my {CLASS}
a photo of a cool {CLASS}
a photo of a small {CLASS}
a tattoo of the {CLASS}
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