
Appendix for
GEXIA: Granularity Expansion and Iterative Approximation

for Scalable Multi-grained Video-language Learning

A. Ablation Studies

Encoder Weight Setup: We perform an ablation study to
explore different weight setups for the dense feature en-
coders prior to pretraining and present the finetuning re-
trieval results on the ActivityNet Captions dataset in Ta-
ble 1. These results demonstrate a significant improvement
when initializing the feature backbone with CLIP pretrain-
ing weights as opposed to training from scratch. It’s evident
that the InternVid-10M-FLT dataset isn’t large enough to
independently train our model from scratch. The common
practice of initializing the video feature backbone with pre-
trained weights from an image model [16] works well for
large-scale video-text pretraining. Furthermore, our obser-
vations indicate that freezing the encoders leads to inferior
outcomes. The best way is to unfreeze the backbone with
a smaller learning rate. This strategy suggests that the im-
age representations learned from CLIP do not seamlessly
transfer to video representations.
Random Integration in GEX: We conduct an abla-
tion experiment to further demonstrate that, even for
single-grained pretraining datasets without prior informa-
tion, using random GEX concatenation operations (⊕v

and ⊕t) can still improve the model’s performance. We
replace Long-Video-Long-Text (LVLT) and Long-Video-
Short-Text (LVST) pairs with the same number of randomly
concatenated short video-text pairs. The rest of the setups
remain consistent. As the results of T2V and V2T retrieval
on ActivityNet Captions shown in Table 2, random concate-
nation is suboptimal to the current data pipeline, leading to
0.5%/1.1% (T2V/V2T R@1) performance drop. Compared
to the approach with SVST only, random concatenation still
provides 3.2%/2.7% performance improvements, which can
be viewed as an alternative way when the prior knowledge
of videos is not available.
LLM for Text Compression (Summarization) in GEX:
We test the effectiveness of various open-source Large Lan-
guage Models (LLMs) serving as the Text Compression
(Θt) operation to create summaries. This assessment is
carried out through 100 summarization tasks, randomly se-

Table 1. Retrieval results of finetuned model on ActivityNet Cap-
tions dataset across different encoder weight setups.

Encoder Weight Setup Text-to-video Video-to-text
R@1 R@5 R@10 R@1 R@5 R@10

Scratch 24.7 51.1 64.1 24.7 52.6 65.9
Freeze CLIP 37.5 67.4 80.6 36.9 68.0 80.9
Unfreeze CLIP 45.3 76.5 86.6 45.0 76.4 87.3

Table 2. Retrieval results of finetuned model on ActivityNet Cap-
tions dataset across different concatenation operations in GEX.

Pretraining Data Pairs Text-to-video Video-to-text
R@1 R@5 R@10 R@1 R@5 R@10

SVST only 41.6 72.8 83.7 41.2 72.6 84.0
Random Concat. 44.8 75.1 86.1 43.9 74.7 85.5
Concat. w/ source IDs 45.3 76.5 86.6 45.0 76.4 87.3

lected from the LSMDC validation set, which comprises
362 short video clips. Using GPT4’s summaries as refer-
ences, we evaluate different models’ performance based on
the relevance score of their generated summaries, involving
ROUGE score [12] and BERTScore [25], along with the av-
erage running time on one summarization instance as pre-
sented in Table 3. Vicuna 13b-v1.5 [5] emerges as the top
performer, particularly in terms of the highest BERTScore,
striking the best balance between performance and runtime.
Note that we don’t use GPT4 directly as the Text Compres-
sion operator due to its high cost and limitations in parallel
processing capabilities.

B. Semantic Alignment between Long and
Summarized Texts

To verify that the summarized short texts retain semantic
similarity with the original concatenated long texts, ensur-
ing consistency between them, we analyze the cosine simi-
larity between the long and summarized short text features.

We randomly sample 100 concatenated long videos
along with their corresponding long texts and summarized
short texts, and compute their CLIP-based [16] features.
Next, we calculate the average cosine similarities between
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Table 3. LLM assessment results. RG: ROUGE score [12]; BERT: BERTScore-F1 [25]; Time: Average running time on one summarization
task. The model underlined is the final selected LLM.

LLM RG-1 RG-2 RG-L BERT Time (s) LLM RG-1 RG-2 RG-L BERT Time (s)
Longchat 7b [11] 0.43 0.20 0.34 0.90 2.45 Internlm 7b [18] 0.32 0.13 0.26 0.87 3.36
OpenLlama 7b [9] 0.48 0.24 0.39 0.89 1.03 RWKV-4 7b [3] 0.28 0.11 0.23 0.88 1.04
OpenLlama 13b [9] 0.38 0.18 0.31 0.90 2.19 Vicuna 7b [5] 0.46 0.23 0.37 0.91 1.91
Fastchat t5 3b [28] 0.48 0.25 0.40 0.91 2.97 Vicuna 13b [5] 0.48 0.24 0.39 0.92 2.19
Dolly-v2-7b [6] 0.36 0.15 0.28 0.89 4.93 Vicuna 33b [5] 0.50 0.27 0.42 0.92 7.38

Table 4. The average cosine similarities of CLIP-based features
between concatenated long videos, concatenated long texts, and
summarized short texts in the pretrained dataset.

Features
concat. long videos
concat. long texts

(100 samples)

concat. long videos
sum. short texts
(100 samples)

concat. long texts
sum. short texts

(1M)
Avg±Std
Cos Sim 0.220±0.037 0.215±0.033 0.791±0.084

the full set of 1M text features and the 100 sampled video-
text feature pairs, as shown in Table 4. The t-SNE visualiza-
tion of the 100 sampled features is also provided in Figure 1,
where we observe the clustering of the features.

From the similarities in Table 4, we observe that the
long-video-long-text pairs (LVLT) and long-video-short-
text pairs (LVST) exhibit similar levels of similarity in their
CLIP-based features (0.220±0.037 vs. 0.215±0.033, re-
spectively). The relatively low similarity between video and
text features can be attributed to the domain gap between
the image-pretraining dataset of the CLIP model and this
video dataset. However, both the t-SNE plot and the cosine
similarity scores show a strong resemblance between the
summarized short texts and the original concatenated long
texts, reflected in the much higher similarity score of 0.791.
These findings suggest that the summarized short texts pre-
serve enough semantic information from the long texts to
effectively serve as positive samples with the long videos
for subsequent alignment learning.

C. Retrieval Complexity and Inference Effi-
ciency

Our GEXIA method incorporates separate video and text
branches, similar in structure to CLIP4Clip [13], maintain-
ing the same efficient retrieval complexity of O(NvNt),
where Nv represents the number of candidate videos and
Nt is the size of the text query set. The video and text
IAMs are connected with the video and text branches re-
spectively, thus the #iter setups do not affect the retrieval
complexity. In contrast, retrieval-specific methods like X-
CLIP [14] introduce cross-modal and fine-grained features
before retrieval, resulting in a much higher complexity of
O(NvNtNfNw), where Nf denotes the number of frames
per video, and Nw represents the average length of words

Figure 1. t-SNE visualization of the CLIP-based features for the
sampled 100 concatenated long videos, concatenated long texts,
and summarized short texts.

Figure 2. Average model inference run time on ActivityNet
Captions across different #iter setups for GEXIA, compared to
CLIP4Clip (mean pooling setup).



in the texts. Additionally, many retrieval-specific mod-
els [2, 7, 14, 21, 27] are finetuned exclusively on retrieval
datasets, which limits their applicability as foundational
models for broader video understanding and classification
tasks.

To further demonstrate the efficiency of our model,
we present the average inference run time across differ-
ent #iter setups, compared to CLIP4Clip (mean pooling
setup) [13]. The experiment was conducted on one NVIDIA
Tesla-V100 GPU with a batch size of 64 using the Ac-
tivityNet Captions dataset. As shown in Figure 2, our
model’s run time is only slightly longer than CLIP4Clip,
due to the smaller feature size and minimal computational
overhead introduced by the iterative approximation process.
Specifically, with #iter=3, our model achieves an 11.8%
relative improvement in text-to-video R@1 on the Activi-
tyNet Captions dataset (according to Table 1 in the paper),
while requiring only 3.3% more inference time compared
to CLIP4Clip. These results highlight the efficiency of our
model, offering substantial performance gains with only a
modest increase in computational cost.

D. Comparison of Computational Costs
We compare the computational costs between our model

and various baseline models, using FLOPs (Floating Point
Operations) per frame as the metric. As illustrated in Ta-
ble 5, our model demonstrates one of the lowest FLOPs
among the compared models, largely due to the use of a
compact backbone (ViT-B/32) for the local video encoder.
Notably, the ViCLIP model incurs a computational cost
that is 17× higher than our model. This lower computa-
tional cost makes our model not only efficient in terms of
inference time but also in terms of overall computational
resource consumption, enhancing its applicability in real-
world scenarios.

E. Detailed Dataset Statistics and #iter Setups
We provide the detailed average video/text lengths of

each downstream dataset and the corresponding #iter se-
tups in Table 6. We set these #iters based on the average
length of the videos and texts of the given datasets, where
#iter = 3 for long video/text data and #iter = 1 for short
ones.

F. Extension to a New Granularity: Image-
Text Data

To further explore the generalization capability of our
method, we extended its application to include a new type of
data granularity: images to short texts, where images can be
seen as one-frame videos. This expansion involves generat-
ing image-text pairs for pretraining, achieved by the Video
Compression (Θv). Here we extract the middle frame from

Table 5. GFLOPs per frame of our model and other baselines.

Model Vision Backbone GFLOPs
CLIPBert [10] Res50 4.1
TACo [22] Res152 11.6
Frozen [2] TS4mer 44.5
LF-VILA [17] SwinB 9.3
HiTeA [24] MViTB 8.2
LocVTP [4] ViTB16 17.6
ViCLIP [20] ViTL14 81.1
VideoPrism [26] ViViTB ≥ 142.0 [1]
Ours ViTB32 4.7

Table 6. Average video/text lengths of the seven downstream
datasets and the corresponding #iter setups.

Dataset Video (sec) Text (#word) #iter (V-T)
ActivityNet 180 49.2 3-3
MSR-VTT 14.8 9.3 1-1
LSMDC 4.7 9.7 1-1
LVU 120 N/A 3 (only V)
COIN 141.6 N/A 3 (only V)
Charades-Ego 31.5 3.9 3-1
How2QA 17.5 16.0 1-1

Table 7. Zero-shot ImageNet [8] classification accuracy results.
All models utilize a ViT-B/32 backbone. ZS: Zero-shot; IT:
Image-Text data pairs; VT: Video-Text data pairs; #iter: Video-
Text iteration number.

Method Pretraining Dataset #PT Granularities ZS Acc.
CLIP [16] YFCC-15M [19] 1 (IT only) 32.8
SLIP [15] YFCC-15M [19] 1 (IT only) 34.3
FILIP [23] YFCC-15M [19] 1 (IT only) 39.5
Ours (#iter: 1-1) InternVid-10M [20] 3 (VT only) 32.5
Ours (#iter: 3-1) InternVid-10M [20] 3 (VT only) 31.0
Ours (#iter: 1-1) InternVid-10M [20] 4 (VT+IT) 33.9
Ours (#iter: 3-1) InternVid-10M [20] 4 (VT+IT) 31.5
Ours (#iter: 0-1) InternVid-10M [20] 4 (VT+IT) 40.6

each short video in the InternVid-10M-FLT [20] dataset
and pair it with the corresponding text of the video. As
such, we compose 10M image-text pairs. Following this,
we take the model that was initially pretrained on video-
text pairs and proceed with further pretraining using these
newly formed image-text pairs for 5 epochs. Additionally,
we set #iter = 0 for the video branch to differentiate the
granularities of the image and video and keep the text #iter
as 1.

After completion of the pre-training phase, we use the
zero-shot ImageNet [8] classification task as a benchmark
to assess the generalizability of our GEXIA method. For
this purpose, to implement the pretrained model for zero-
shot image classification, following the CLIP setup [16], we
employ a prompt template: “A video of a {label}.” to trans-
form the problem into zero-shot image-text retrieval. The
results of the experiment are shown in Table 7. Our model
demonstrates remarkable generalization capability to the
new granularity of image-short-text, surpassing reference



a park with a golf course and a castle in the background. a woman playing golf at a mini golf course. woman enjoying
a game of golf on a mini golf course. a mini golf course with statues of elephants. a woman playing golf at a mini golf
course.

Long Text

Original 
Video

A mini golf course with statues of elephants and a woman playing golf.Short Text

Long Video

Long Video

(b)(a) (c) (d) (e)

(b)(a) (c) (d) (e)

(b)(a) (c) (d) (e)

Figure 3. The visualization of alignment scores for long-video-long-text and long-video-short-text pairs. Given the same video, our GEXIA
method is able to capture and align different information according to the input texts. Areas highlighted in red indicate regions of higher
alignment scores, whereas the blue regions represent areas with lower alignment scores.

A boy pushes a rake while riding a scooter down the driveway. It pushes the leaves in the driveway out to the road. He 
continues the pattern until the driveway is clean of debris.Long Text

Long Video

#iter: 3-3

#iter: 1-1

(b)(a) (c) (d) (e)

(b)(a) (c) (d) (e)

(b)(a) (c) (d) (e)

Figure 4. The visualization of alignment scores for different #iter settings. The 3-3 setup of #iter works better than the 1-1 in this
long-video-long-text case. Areas highlighted in red indicate regions of higher alignment scores, whereas the blue regions represent areas
with lower alignment scores.



models targeting image tasks by a large margin. The com-
parison across our five models shows that setting #iter = 0
for image inputs and incorporating image-text pairs into the
pretraining data leads to the highest performance for image-
based tasks. This finding further affirms that assigning ap-
propriate iteration numbers based on the granularity of the
input, along with pretraining data of the targeted granular-
ity, is the key to achieving effective multi-grained visual-
language alignments.

G. Qualitative Study of Cross-modal Align-
ments

We qualitatively study the video-text alignments of our
GEXIA models by visualizing pixel-level alignment scores
across temporal and spatial dimensions. Given an input
video v and text t, we start by computing the similarity
value S between the output video and text embeddings.
Next, we create a modified version of the video by mask-
ing a small patch at coordinates [h,w] in one frame t of the
video, resulting in vmask

t,h,w. We then calculate the similarity
value Smask

t,h,w between the embeddings of the masked video
and the text.

The difference between St,h,w and Smask
t,h,w is defined as

the alignment score at the patch level, indicating the reduc-
tion in alignment when the mask is applied. We apply a
32 × 32 mask patch across the video frames in a sliding
window fashion with a 16-pixel stride, producing a 13× 13
matrix of patch-level alignment scores for each frame. We
then resize these scores to match the original input video di-
mensions, resulting in the pixel-level alignment scores. We
visualize the pixel-level scores in Figure 3 and Figure 4.

G.1. Alignments with Long and Short Texts

In Figure 3, when presented with the same long video,
we observe notable differences between long text and short
text inputs. For the long text, which contains more detailed
information, the alignment scores are dispersed more uni-
formly across various regions and objects within the video.
This indicates a comprehensive integration of video content
with extensive textual details. Conversely, in the case of
short text, the alignment scores are more focused on specific
key elements mentioned in the text. For example, the model
concentrates on ”the status of elephants” in frames (c) and
(e), and on ”a woman playing golf” in frame (b). This pat-
tern reveals that our model is adept at aligning video content
with both long- and short-text inputs, effectively adjusting
its focus based on the granularity of the text.

G.2. Alignments with Different Iteration Numbers

In Figure 4, we further study the impact of the itera-
tion number #iter in a qualitative way. This assessment
involves a comparison of visualized pixel-level alignment

scores using two #iter settings for a given pair of long
video and long text. The figure reveals that when #iter is
set to 1-1, the model struggles to identify key details in the
text, notably missing elements like ”scooter” and ”rake” in
frames (b), (c), and (d). Additionally, the alignment scores
appear more randomly scattered across the frames, suggest-
ing suboptimal alignment in this configuration. On the other
hand, the #iter set to 3-3 shows a contrast. This setup en-
ables the model to detect all critical details in the text, re-
flected in high alignment scores for corresponding objects
in the video. This difference in performance between the
two #iter settings not only highlights the significant role
of iteration numbers during inference but also reaffirms the
adaptability of our model to multi-grained video-text pairs.
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