
Appendix

A. Additional implementation details
As mentioned in section 4.2, we adopted multi-scale fea-

ture strategy to aggregate intermediate features at multiple
spatial resolutions. we detail the implementation of both
the multi-scale and single-scale designs. For the multi-scale
strategy, we use the deformable attention to directly aggre-
gate the multi-scale features from a ResNet backbone, as
illustrated in Fig. 11. Conversely, the single-scale strategy
follows a two-step process. First, a feature pyramid network
(FPN) is utilized to aggregate multi-scale features. Subse-
quently, deformable attention is applied to aggregate infor-
mation at a single spatial resolution as illustrated in Fig. 12.
The current implementation leverages the multi-scale strat-
egy for its advantages (an ablation study comparing multi-
scale and single-scale fusion strategies is given in section
C).
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Figure 12. Single-scale strategy

B. Performance for objects with different
speeds

We further investigate the compensation performance of
LRCP for objects with different speeds, as shown in Tab.
3. We see that fast-moving objects are significantly more
susceptible to latency compared to slower objects. LRCP
effectively mitigates the effects of latency for objects across
a range of speeds. Nonetheless, in extreme scenarios with
both high latency and high-speed objects, the compensation
performance of LRCP begins to deteriorate.

C. Ablation Studies for the main architecture
In LRCP, we use deformable attention to aggregate fea-

tures from multiple agents, which achieves state-of-the-art
performance on two datasets when the latency is zero. We
provide ablation studies for our implementation options.

Tab. 4 shows the effect of the number of self/cross attention
layers in the feature fusion decoder. Similar to the flow pre-
diction module, using both cross and self-attention layers
yields better results than using only cross-attention layers.
When stacking 4 cross-attention and 2 self-attention layers,
we get the best performance. Tab. 4 provides the ablation
of different implementation choices, as mentioned in sec-
tion 4.2. We see that providing supervision of each agent,
using a multi-scale strategy, and using a stronger ResNet
backbone can improve detection performance. Specifically,
we noticed that using single-scale feature fusion has a large
performance drop for the AP@0.7 metric.

D. Detailed Comparison of 3D detection per-
formance

To assess the effectiveness of LRCP, we conducted thor-
ough experiments on the V2X-Sim and Dair-V2X datasets.
Tab. 6 and 7 delve into the object detection performance
under varying latency constraints, ranging from 0 to 500
milliseconds. These tables directly correspond to the tabu-
lar data presented in Figure 6 of the main text. Our exper-
iments reveal that LRCP consistently outperforms existing
methods on both datasets. This advantage becomes even
more significant as the allowable processing time for detec-
tion increases.



Table 3. Compensation performance for objects with different speeds on Dair-V2X dataset

Speed v ≤ 5m/s 5m/s < v ≤ 10m/s v ≥ 10m/s

Metric AP@0.5

Latency (ms) 0 100 300 500 0 100 300 500 0 100 300 500

Deformable attn 79.1 78.8 77.0 71.6 90.5 88.7 51.7 50.3 90.2 71.0 39.8 59.8
LRCP 78.7 78.7 78.5 78.2 90.2 90.3 89.1 86.5 88.3 88.9 86.2 77.4
Metric AP@0.7

Latency (ms) 0 100 300 500 0 100 300 500 0 100 300 500

Deformable attn 67.9 67.0 64.6 61.3 81.5 59.6 45.1 45.5 81.4 38.1 35.7 54.0
LRCP 67.6 67.3 66.8 66.4 80.5 79.5 76.3 71.6 79.1 76.4 67.9 58.2

Table 4. Effect of the number of self/cross attention layers in the
feature fusion decoder, experimented on Dair-V2X datasets

layers AP@0.5 AP@0.7

3 cross 80.2 68.8
2 cross+1 self 80.5 69.3
6 cross 80.8 69.3
4 cross+2 self 80.9 70.1
6 cross + 2 self 79.2 68.6

Table 5. Ablation of implementation options, experimented on
Dair-V2X datasets

Supervise single Multi-scale ResNet backbone AP@0.5 AP@0.7

✓ ✓ ✓ 80.9 70.1
✓ ✓ 80.1 68.3

✓ ✓ 79.3 59.6
✓ ✓ 80.9 68.7

Table 6. Comparison of 3D detection performance on the
V2X-Sim

Latency(ms) 0 200 400 600

Single 76.7

Metric AP@0.5

V2X-ViT 88.8 87.2 84.3 82.9
Openv2v 80.0 79.6 78.8 78.2
Where2comm 86.8 84.6 80.8 79.7
Cobevflow 86.8 85.2 83.3 82.4
DeformableAttn+Syncnet 89.4 87.5 84.7 84.3
Deformable attn 89.4 87.5 83.9 82.3
LRCP (ours) 89.4 89.3 89.2 88.3
Metric AP@0.7

Single 65.8

V2X-ViT 79.3 75.6 73.9 73.2
Openv2v 68.1 66.9 66.4 66.5
Where2comm 83.8 77.4 75.0 74.4
Cobevflow 83.8 79.2 78.1 76.2
DeformableAttn+Syncnet 87.5 81.0 80.2 79.6
Deformable Attn 87.5 81.4 78.6 78.1
LRCP (ours) 87.5 86.8 85.6 83.4

Table 7. Comparison of 3D detection performance on the
Dair-V2X

Latency(ms) 0 100 200 300 400 500

Single 67.4

Metric AP@0.5

V2X-ViT 71.5 70.4 69.1 68.1 67.1 66.5
Openv2v 73.0 72.3 71.3 70.2 69.9 69.6
Where2comm 80.1 78.5 73.7 71.2 69.5 68.7
Cobevflow 80.1 79.0 75.6 74.0 73.3 73.1
DeformableAttn+Syncnet 80.9 78.7 74.3 72.8 71.6 70.6
Deformable Attn 80.9 79.4 74.6 71.3 69.6 68.3
LRCP (ours) 80.5 80.5 80.3 80.0 79.6 79.1
Metric AP@0.7

Single 58.7

Latency (ms) 0 100 200 300 400 500

V2X-ViT 54.7 54.0 53.4 53.1 52.9 52.7
Openv2v 58.0 57.2 56.5 56.3 56.4 56.3
Where2comm 67.3 61.2 58.8 58.3 58.0 57.6
Cobevflow 67.3 62.4 61.1 60.3 59.5 59.0
Def. Attn+Syncnet 70.1 64.5 62.1 61.9 61.3 61.1
Deformable Attn 70.1 64.1 61.0 60.2 59.6 58.9
LRCP (ours) 69.5 69.1 68.4 67.8 67.2 66.5


