
MLLM-Tool: A Multimodal Large Language Model For Tool Agent Learning

Supplementary Material

In this supplementary material, we list i) dataset details,
including selection criteria, searching for multimodal data,
prompt templates, data distribution, and crowdsourcing de-
tails; ii) experiment setup, data preprocessing; iii) addi-
tional experimental results; iv) visualization of the model
card, instruction-answer pairs and the actual cases of when
using MLLM-Tool; v) our proposed categorization system.

1. Dataset Details

In this section, we elaborate on the dataset construction
details and the training and testing data distribution. Pre-
cisely, Figure 1.1 visualizes the entire dataset construction
process, while Sec. 1.2 - Sec. 1.4 detail each step, includ-
ing API selection criteria, API functional boundaries crite-
ria, and prompt construction. Sec. 1.5 visualizes some data
distributions of the training set and testing set. Sec. 1.6 de-
scribes the process of employing annotators and instructing
them on some guidelines, and in Sec. 1.7, we explain the
details when searching for content-matched non-text data.
We emphasize that the collection and processing of this
dataset involved over 2000 person-hours, ensuring its re-
liability for advanced computer vision research and appli-
cations by meticulous attention to detail.

1.1. Visualization of Dataset Construction Process

We show the whole process of collecting our dataset in
Figure 1. The difficulty in collecting the benchmark is re-
flected in three aspects. (1) Task Classification: We restruc-
ture a hierarchical task classification system. This advance-
ment rectifies the overly coarse-grained categorizations ob-
served in the HuggingFace platform, ensuring each API has
a specific and unambiguous task label. (2) Annotation of
Multimodal Input Instructions: Should an instruction reveal
cues from modalities other than text, a precise coherence
between the divulged information in the instruction and the
content of the non-textual modality is paramount. In cases
where no such cues are disclosed, we deem it essential to
investigate five potential cases caused by textual ambiguity.
Moreover, we show the visualization of five ambiguity types
in Figure 2. Such scrutiny lays the groundwork for subse-
quent experiments aimed at validating whether information
from other modalities aids large language models in mak-
ing appropriate tool selections; (3) Instruction Matching:
To identify all APIs meeting an instruction’s functional re-
quirements, we must categorize APIs based on identical and
similar functionalities respectively during collection. When
pairing instructions for groups of APIs with analogous func-
tions, it becomes crucial to discern whether a provided in-

Ambiguity Types

Figure 1. The process of dataset construction. It mainly consists
of three stages. The first step is collection and preprocessing, in-
cluding crawling the original API from HuggingFace and filtering
and re-categorizing the API according to tasks. The second step is
the generation of instruction-answer pairs, including using GPT-
4 to generate instructions based on API functions, determining
whether there is text ambiguity in the user prompts, and searching
for content-matching input for multi-modal. The third step is con-
structing a potential one-to-many instruction-answer pair based on
the relationship between API functions.

struction strictly satisfies each API’s functional description.
This determination will influence the number of APIs that
can aptly respond as the correct answer to a given instruc-
tion.

1.2. Filtering Rules

After crawling APIs from HuggingFace, we implement
stringent selection criteria for APIs due to the varying qual-
ity of these models. The specific filtering rules for this se-
lection process are outlined as follows:

Low-Quality Model Card. Many APIs either lack
model cards or contain overly simplistic ones, providing
little helpful information. Additionally, some APIs have
ceased maintenance or have been integrated into other APIs.
Even multiple APIs share a single model card. These APIs
pose challenges in organizing API documentation and re-
quire manual consultation of additional sources like papers

and GitHub. While enriching the number of APIs, this ap-
proach introduces inaccuracies. Finally, we opted to remove
such APIs from our dataset uniformly.

NSFW Content Risk. For ethical and safety consid-
erations, we remove APIs, particularly some text-to-image
types, which pose risks of generating NSFW (Not Safe For
Work) content. Such content is deemed inappropriate for all
age groups and could compromise the dataset’s applicabil-
ity in diverse settings.

License Restrictions. We exclude models with restric-
tive licensing terms. An example is the Llama2 model,
which requires a formal application and approval process
to download and use its model weights.

Identical APIs. Numerous models on HuggingFace
share identical structures and datasets, merely differing in
implementation by various contributors. To avoid redun-
dancy, we selectively retain only the most downloaded ver-
sion of each such model, ensuring the dataset is more
streamlined. For APIs with different model architectures
but trained on the same dataset and having the same func-
tions, as we mentioned in the main text, we select the top
five APIs based on download statistics.

Scribble Depth

English Chinese French

Pose

Low Res Rainy Foggy

MedicalPortraitIndoor

Common RareSpecialized

Domains

Categories

Quality

Conditions

Others

Ambiguity Types

Figure 2. Five types of ambiguity cases need to be checked during
the instruction-answer pair generation step.

1.3. API Function Boundaries

Multi-task APIs. Our dataset includes multi-task APIs
like various large language models (Bloom [2], Baichuan2
[3], Falcon [1]), capable of numerous NLP tasks, some of
which even fall outside HuggingFace’s classification sys-
tem. For simplicity, we focus specifically on their text gen-
eration capabilities, aligning with HuggingFace’s functional
categorization of such APIs. Additionally, we modify the
descriptions of these APIs in our dataset to ensure a match
between the functionalities reflected by the provided queries
and those described in the API descriptions.

API Function Differentiation. After identifying the

specific subdomain of each API, we detail our approach for
discerning whether APIs within the same subdomain pos-
sess identical or similar functions. For plain text input APIs,
we can assess APIs based on the language and context of
the datasets they utilize. For example, in sentiment anal-
ysis tasks, we discern various contexts by relying on the
distinct domains of data sources, such as financial, legal,
social media, and reviews, enabling us to classify nuanced
functional differences among similar-function APIs. Simi-
larly, we refine API function categorization for multimodal
inputs, especially images, by analyzing dataset contexts.
For instance, in Visual Question Answering tasks, datasets
feature a range of images such as Diagrams, Charts, Doc-
uments, Infographics, and other general images, enabling
nuanced API segmentation. The above examples provide
merely a subset of our API classification rules. Due to the
complex and case-by-case nature of the analysis, the com-
plete set of rules is not listed here.

One-to-many Situation Identification. Our approach,
driven by GPT-4, originates from each API’s functional de-
scription and generates corresponding instructions that ad-
here strictly to the API’s functional boundaries. Hence, con-
sideration is primarily given to other APIs with the same
function in one-to-many scenarios.

1.4. Prompt Construction

Below, we list the detailed prompts used for generating
instructions. The prompts fed to GPT-4 are composed of
(1)the API call’s relevant information, including its name,
a concise functional description, and training datasets if
mentioned in the model card, (2)some sample instructions,
and (3)additional requirements. The sample instructions are
leveraged to foster format standardization and enhance the
quality of GPT-4’s outputs. So, we invite some expert anno-
tators to craft high-quality instructions in advance and ran-
domly choose two each time as exemplary inputs to GPT-
4. We design two sets of prompt templates in our dataset,
mindful of prompt ambiguity cases. For APIs with multi-
modal inputs susceptible to prompt ambiguity, we strive to
balance the final selection of ten instructions, maintaining
a 1:1 ratio between unambiguous and ambiguous instruc-
tions; the corresponding prompt template is shown in Fig-
ure 4 and Figure 5 respectively. We emphasize that query
ambiguity pairs are pairs with identical textual inputs but
varied multimodal inputs.

1.5. Visualization of Data Distributions

We tally the instances of each ambiguity type in Fig-
ure 3b, amassing a total of 2533 ambiguity pairs. Pre-
dominantly, these are concentrated within conditional cases
involving image inputs, comprising 1530 pairs, since our
dataset covers 11 distinct condition types of ControlNet [4],
and their various combinations, achieving a considerable

0

200

400

600

800

1000

1200

1400

1600

1800

2000

One-to-one One-to-multi w ambiguity w/o ambiguity

(a) The distribution of sub-testing sets divided by API
option number and ambiguity types respectively.

436

272

1801530

115

Domains Categories

Quality Conditions

Others

(b) The distribution of each ambiguity type in
the whole dataset.

87

51

34313

48

Domains Categories

Quality Conditions

Others

(c) The distribution of each ambiguity type in
the testing set.

Figure 3. Dataset statistic visualization.

quantity.
Particularly for the testing set, we depict in Figure 3a

and Figure 3c the distribution of API quantities across each
testing subset. These subsets are constructed based on three
distinct partitioning criteria: ambiguity types, API option
number, and modality. It is worth noting that the with-
out ambiguity category consists of two parts: cases with
purely textual inputs that inherently lack ambiguity (1,452
instances) and cases with non-textual inputs where ambigu-
ity is absent (412 instances).

In our work, we collect 932 APIs and one ”Unknown”
category, featuring 651 APIs with pure text inputs, 191 APIs
incorporating image inputs, 80 incorporating audio inputs,
and 10 incorporating video inputs. Given the long-tail dis-
tribution of API quantities for various tasks on Hugging-
Face, coupled with our selection criteria, the APIs we ulti-
mately choose exhibit a similar long-tail distribution across
both modality and task level. In future work, we aim to en-
rich our collection with more APIs, particularly those with
video inputs, and optimize the distribution across different
tasks for more uniformity.

1.6. Crowdsourcing Details

In this study, we employ eight annotators with NLP or
CV backgrounds, with an estimated hourly 7.10$ compen-
sation and an up to 20% bonus for those with high anno-
tation quality. We provide a comprehensive training docu-
ment and record a video to guide them through the process
of annotation. We also instruct them to avoid using private
information or license-risky data from unknown or sensi-
tive sources. All annotators are presented with a consent
form and must agree to join the project. We set up a cross-

checking mechanism to correct errors. Moreover, our team
members conduct manual checking and optimization. If the
data is collected from a website, we restore the website links
and upload the metadata when releasing the dataset. We
claim we only use the data for academic research instead of
commercial usage.

1.7. Collection of text-matched multimodal input

Our non-text data sources are from either the dataset API
used or Google Images. We prioritize collecting from open-
source datasets by manually checking that the data content
is consistent with the instructions generated by GPT. For the
latter, we can retrieve the data by keywords in the Google
database, and for these data, we pay more attention to its
license to ensure its legality.

Configuration 7B-model 13B-model

Optimizer AdamW AdamW
Optimizer Momentum β1 = 0.9, β2 = 0.95 β1 = 0.9, β2 = 0.95

Peak learning rate 5e-4 5e-4
Weight decay 0.001 0.001
Warmup steps 10 10

Batch size 64 32
Micro-batch size 4 1

Gradient accumulation steps 4 8
Maximum target length 512 512
ImageBind Checkpoint ImageBind-Huge ImageBind-Huge

LoRA attention dimension (r) 32 32
LoRA scaling alpha (α) 32 32

LoRA drop out 0.1 0.1

Table 1. 7B and 13B model training configuration.

2. Experiment Setup and Data Processing

We list the setup, including some hyperparameters used
to train our model, in Table 1. We adopt ImageBind’s data
processing approach for the multimodal inputs. We evenly
split the video into five clips and randomly sampled two
frames from each clip to cover the entire length, similar to
other Vision Transformer (ViT)-based works with video in-
put. For audio, we sample each input audio at 16KHz. Sub-
sequently, we capture a log mel spectrogram featuring 128
frequency bins. Then, the spectrogram can be seen as a 2D
image. In this way, we can use ViT for these three multi-
modal encoders. A modality-specific linear projection head
is added to each modality’s encoder to align the feature into
a uniform 1024-sized dimension.

3. Additional Experimental Results

3.1. Results of Multiple Options Categorized by In-
put Modality

Regarding the condition of whether multiple API options
exist, we further refine the testing subsets—originally di-
vided based on the presence or absence of multiple API op-
tions—by introducing an additional criterion based on input
modality to gain deeper insights into the issue. We select
two versions of the Vicuna model with different parame-
ter sizes, and the corresponding performance is presented
in Table 2. From the results, we observe that for the case
where multiple API options exist, the performance is con-
sistently better than the case with only one API option, re-
gardless of the input modality. This validates the argument
presented in the main text. On one hand, the presence of
multiple API options reduces the problem’s complexity and
increases the likelihood of selecting the correct API. On the
other hand, during training, the data involving multiple API
options benefits from being split into multiple one-to-one
training strategies, further improving performance.

4. Dataset Visualization

4.1. Model Card Visualization

We illustrate 6 model card samples in Figure 6-11, which
covers all the information mentioned in the main text. We
list some samples from several different modalities and dif-
ferent functions.

4.2. Instruction-Answer Pairs Visualization

In Figure 12-14, we offer 7 cases sampled from the test-
ing set. When we train our model, we input the conver-
sation between humans and GPT in a conversation format,
and the other attributes help us divide them into different
sub-testing sets.

Model API Options Input Modality Acc
Vicuna-7B one-to-one Video 55.56
Vicuna-7B one-to-many Video 83.33
Vicuna-7B one-to-one Audio 78.57
Vicuna-7B one-to-many Audio 96.32
Vicuna-7B one-to-one Image 75.82
Vicuna-7B one-to-many Image 96.30
Vicuna-7B one-to-one Text 58.24
Vicuna-7B one-to-many Text 86.43

Vicuna-13B one-to-one Video 44.44
Vicuna-13B one-to-many Video 91.67
Vicuna-13B one-to-one Audio 75.00
Vicuna-13B one-to-many Audio 95.59
Vicuna-13B one-to-one Image 86.81
Vicuna-13B one-to-many Image 96.10
Vicuna-13B one-to-one Text 70.21
Vicuna-13B one-to-many Text 90.24

Table 2. The performance of the testing subsets based on the joint
criterion of the presence of multiple API options and the input
modality.

4.3. Agent Output Visualization

We show four actual cases using our MLLM-Tool in Fig-
ure 15-18. Our system supports inputs from four modalities
and leverages the predicted API to execute, finally getting
customers’ expected results.

5. Categorization System
We illustrate our proposed categorization system in Ta-

ble 3,4,5. The system is two-level hierarchical. The coarse-
level task setting mainly refers to the classification of Hug-
gingFace, while the fine-grained subtask is based on the dif-
ferent task descriptions.

User: You are an NLP task expert. Given an API, you need to generate 20 different user queries that utilize the
API function, adhering to the following input and output format for each query:
Input:
API Name: This is the name of the API Function.
Description: This is a detailed description of the model.
Prohibit Words: These are words that are prohibited from appearing in the output.

Output:
Query1: This is an instruction that can utilize the API function.
Query2: This is an instruction that can utilize the API function.
Query3: This is an instruction that can utilize the API function.
Query4: This is an instruction that can utilize the API function.
Query5: This is an instruction that can utilize the API function.
. . .
Query20: This is an instruction that can utilize the API function.

Below are some examples:
Example 1:
Input:
API Name: microsoft/codereviewer
Description: CodeReviewer is a model pre-trained with code change and code review data to support code review
tasks.
Prohibit Words: ”API, tools, model”

Output:
Query1: I’ve made some changes to my Python code. Can you review this snippet for me? ”def addNums(a, b):
return a + b”
Query2: I’m not very confident in my Java coding skills. Could you check this piece for potential issues? ”public int
divide(int x, int y) { return x / y; }”
Query3: I’m trying to refactor this C# method. Does it look okay? ”public void PrintName(string name) {
Console.WriteLine(name); }”
Query4: I wrote this SQL query, and I’m unsure if it’s optimized. Can you review it? ”SELECT * FROM users
WHERE age ≥ 25;”
Query5: Here’s a piece of JavaScript function I came up with. Any suggestions for improvement? ”function
greet(name) { return ’Hello ’ + name; }”
Query6: I’ve been learning Ruby recently. Would appreciate your thoughts on this code segment: ”def multiply(x,
y) x * y end”
Query7: I’m not sure if this CSS is correct. Can you review it? ”h1 { color: blue; font-size: 30px; }”
Query8: I just started with Swift. Here’s a function I wrote. Could you review it for best practices? ”func
displayMessage(message: String) { print(message) }”
Query9: My colleague wrote this PHP function, but it seems off. Can you review it for me? ”function subtract(x,y)
{ return x−y; }”
. . .
Query20: I’m learning Kotlin and wrote this simple method. Mind taking a look? ”fun sum(a: Int, b: Int): Int = a + b”

To be continued

Continued
Example 2:
Input:
API Name: Salesforce/blip-vqa-base
Description: This model is a base-sized ViT-based BLIP trained on the visual question answering task VQA2.0
dataset. The model’s input is an image and a text question, and the model’s output is a text answer.
Prohibit Words: ”API, tools, model, VQA2.0”
Output:
Query1: I recently visited a new city and took some photographs. Based on this particular image, can you tell me
what is the weather conditions like?
Query2: I was at a photo exhibition and took this picture. Could you provide information about was this taken in a
Latin American country judging from the dress?
Query3: I was at the park and saw a dog playing. By analyzing this photo, can you tell if the frisbee it is using is
hard or soft?
Query4: My cousin went to a new food joint and ordered their specialty hot dog. By looking at this picture, can you
determine if the hot dog is larger than a normal one?
Query5: I attended a family gathering and took a group photo. By analyzing the photograph, how many kids can you
see in the picture?
Query6: Looking at this captivating portrait, I noticed an object in the individual’s hand. It seems to be a sweet treat.
What is this person holding?
Query7: I was at the beach and took a photo of a man skiing. By examining the image, can you tell if the wave is
chasing him?
Query8: I visited the local train station and captured an image of a passing train. Can you identify what color the
train is from the picture?
Query9: This cityscape presents an old-fashioned vehicle that stands out amidst the modern structures. I’d like to
know more about this vehicle. Could you tell me its model and color?”
. . .
Query20: Given the serene backdrop of sailboats and a calm sea, can you tell me how many boats are there?

Note that:
1. When crafting queries, avoid including the API’s name;
2. Ensure that the queries are varied and diverse;
3. When processing an input, any words listed in the Prohibited Words must be strictly excluded from the response.

Now, let’s start.
Input:
API Name: [API Name]
Description: [API Description]
Prohibit Words: [Some words]

Figure 4. Example of the unambiguous prompt template: This template applies to pure text inputs and a part of multimodal input
scenarios where textual inputs reveal multimodal information. In practical usage, the template’s masked sections should be populated with
the respective API’s name, description, and words prohibited in the instructions.

User: You are an NLP task expert. Given an API, you need to generate 20 different user queries that utilize the
API function, adhering to the following input and output format for each query:
Input:
API Name: This is the name of the API Function.
Description: This is a detailed description of the model.
Prohibit Words: These are words that are prohibited from appearing in the output.

Output:
Query1: This is an instruction that can utilize the API function.
Query2: This is an instruction that can utilize the API function.
Query3: This is an instruction that can utilize the API function.
Query4: This is an instruction that can utilize the API function.
Query5: This is an instruction that can utilize the API function.
. . .
Query20: This is an instruction that can utilize the API function.

Below are some examples:
Example 1:
Input:
API Name: timm/resnet101.a1h in1k
Description: A 101 layers ResNet-B image classification model trained on ImageNet-1k.
Prohibit Words: ”API, tools, model, ImageNet”

Output:
Query1: I’d value your input on this image’s classification.
Query2: There’s an image in my possession, and I’m seeking a label for it.
Query3: I need help in determining the label for this image. Can you help?
Query4: Can you provide a label perspective for this image?
Query5: How would you manage the categorization of this particular visual?
Query6: There’s an intriguing image that I’ve come across, and I’m curious about its category.
Query7: How would you classify this picture?
Query8: I’d be grateful for your view on this image’s category.
Query9: I’m searching for a label for this visual. Can you assist?
. . .
Query20: What category seems plausible for this visual, in your view?

Example 2:
Input:
API Name: lllyasviel/control v11f1p sd15 depth
Description: This model is intended for control diffusion models by adding extra conditions. Trained with depth
estimation, the condition image is an image with depth information, usually represented as a grayscale image, and
the output is a new image.
Prohibit Words: ”API, tools, model, depth, controlnet”

To be continued

Continued
Output:
Query1: Use my image to depict a family picnic in a sunlit park with children playing.
Query2: Can you reimagine my image as a soccer match in progress, with players and fans cheering?
Query3: Create an adventure scene with pirates and treasure islands using my image.
Query4: Can you make my image into a heartwarming scene of a mother duck leading her ducklings through a pond?
Query5: Craft a depiction of a magician performing tricks in front of an amazed audience from my image.
Query6: Could you reshape this photograph into a bustling train station with intricate ironwork and arches?
Query7: Transform this snapshot into a charming cottage nestled among rolling hills and wildflowers.
Query8: I’m curious about how this picture would be reimagined as a bustling harbor with ships, cranes, and cargo
containers.
Query9: Use my image to depict a family picnic in a sunlit park with children playing.
. . .
Query20: I’d love to see this image as a gardener carefully pruning roses in a blooming garden.

Note that:
1. When crafting queries, avoid including the API’s name;
2. Ensure that the queries are varied and diverse;
3. When processing an input, any words listed in the Prohibited Words must be strictly excluded from the response;
4. The queries should not convey or imply multimodal information.

Now, let’s start.
Input:
API Name: [API Name]
Description: [API Description]
Prohibit Words: [Some words]

Figure 5. Example of the ambiguous prompt template: This template applies to other multimodal input scenarios where textual inputs
do not reveal multimodal information. In practical usage, the template’s masked sections should be populated with the respective API’s
name, description, and words prohibited in the instructions.

Domain: “Text“,
API_name: “JulesBelveze/t5-small-headline-generator”,
API_call: "AutoModelForSeq2SeqLM.from_pretrained("JulesBelveze/t5-small-headline-generator")”,
Parameters: “article text, model name”,
Coarse_functionality: “Summarization”,
Fine_functionality: “Title Generation”,
Descriptions: [
 "This model is a t5-small fine-tuned for headline generation using the JulesBelveze/tldr_news dataset.",
 "The input of the model is a text and the output of the model is a headline text."

],
Example codes:

import re
from transformers import AutoTokenizer, T5ForConditionalGeneration

WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))

article_text = """US FCC commissioner Brendan Carr has asked Apple and Google to remove TikTok from their
app stores. The video app is owned by Chinese company ByteDance. Carr claims that TikTok functions as a
surveillance tool that harvests extensive amounts of personal and sensitive data from US citizens. TikTok
says its data access approval process is overseen by a US-based security team and that data is only accessed
on an as-needed basis under strict controls."""
model_name = "JulesBelveze/t5-small-headline-generator"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)

input_ids =
tokenizer([WHITESPACE_HANDLER(article_text)],return_tensors="pt",padding="max_length",truncation=True,max_le
ngth=384)["input_ids"]

output_ids = model.generate(input_ids=input_ids,max_length=84,no_repeat_ngram_size=2,num_beams=4)[0]
summary = tokenizer.decode(output_ids,skip_special_tokens=True,clean_up_tokenization_spaces=False)
print(summary)

Figure 6. Model Card Visualization. (Sample 1)

Domain: “Text“,
API_name: “DDDSSS/translation_en-zh”,
API_call: "AutoModelForSeq2SeqLM.from_pretrained("DDDSSS/translation_en-zh")”,
Parameters: “x, model name”,
Coarse_functionality: “Translation”,
Fine_functionality: “Translation”,
Descriptions: [
 "The main training data of this model is the English in opus100 and CodeAlpaca_20K as the translation content,
and the chatglm is used as the translator to translate it into Chinese, and the DDDSSS/en-zh-dataset dataset is
obtained after filtering the dirty data.",
 "The input of the model is a text in English, and the output of the model is a text in Chinese."
],
Example codes:

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
parser.add_argument('--device', default="cpu", type=str, help='"cuda:1"、"cuda:2"……')
mode_name = opt.model
device = opt.device
model = AutoModelForSeq2SeqLM.from_pretrained(mode_name)
tokenizer = AutoTokenizer.from_pretrained(mode_name)
translation = pipeline("translation_en_to_zh", model=model, tokenizer=tokenizer,
 torch_dtype="float", device_map=True,device=device)
x=["If nothing is detected and there is a config.json file, it’s assumed the library is transformers.","By
looking into the presence of files such as *.nemo or *saved_model.pb*, the Hub can determine if a model is
from NeMo or Keras."]
re = translation(x, max_length=450)
print('翻译为：' ,re)

Figure 7. Model Card Visualization. (Sample 2)

Domain: “Audio“,
API_name: “microsoft/speecht5_vc”,
API_call: "SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc")”,
Parameters: “path”,
Coarse_functionality: “Audio-to-Audio”,
Fine_functionality: “Voice Conversation”,
Descriptions: [
 "This is a SpeechT5 model fine-tuned for voice conversion (speech-to-speech) on CMU ARCTIC. This model is for
self-supervised speech/text representation learning, motivated by the success of T5",
 "The input of the model is an audio, and the output of the model is an audio.",
 "The model is trained on CMU ARCTIC dataset."
],
Example codes:

from transformers import SpeechT5Processor, SpeechT5ForSpeechToSpeech, SpeechT5HifiGan
from datasets import load_dataset
dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
dataset = dataset.sort("id")
sampling_rate = dataset.features["audio"].sampling_rate
example_speech = dataset[0]["audio"]["array"]
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_vc")
model = SpeechT5ForSpeechToSpeech.from_pretrained("microsoft/speecht5_vc")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")

inputs = processor(audio=example_speech, sampling_rate=sampling_rate, return_tensors="pt")
load xvector containing speaker's voice characteristics from a file
import numpy as np
import torch
speaker_embeddings = np.load("xvector_speaker_embedding.npy")
speaker_embeddings = torch.tensor(speaker_embeddings).unsqueeze(0)

speech = model.generate_speech(inputs["input_values"], speaker_embeddings, vocoder=vocoder)

import soundfile as sf
sf.write("speech.wav", speech.numpy(), samplerate=16000)

Figure 8. Model Card Visualization. (Sample 3)

Domain: “ Audio“,
API_name: “facebook/mms-lid-126”,
API_call: "AutoModelForAudioClassification.from_pretrained("facebook/mms-lid-126")”
Parameters: “model id, path, language”,
Coarse_functionality: “Audio Classification”,
Fine_functionality: “Spoken Language Identification”,
Descriptions: [
 "This model is fine-tuned for speech language identification (LID) and part of Facebook's Massive Multilingual
Speech project. It is based on the Wav2Vec2 architecture and can recognize 126 languages from facebook/mms-1b
dataset.",
 "The input of the model is an audio, and the output of the model is a predefined language label.",
],
Example codes:

from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor
import torch

stream_data = load_dataset(path, language, split="test", streaming=True)
stream_data = stream_data.cast_column("audio", Audio(sampling_rate=16000))
sample = next(iter(stream_data))["audio"]["array"]

model_id = "facebook/mms-lid-126"

processor = AutoFeatureExtractor.from_pretrained(model_id)
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_id)
inputs = processor(sample, sampling_rate=16_000, return_tensors="pt")

with torch.no_grad():
 outputs = model(**inputs).logits

lang_id = torch.argmax(outputs, dim=-1)[0].item()
detected_lang = model.config.id2label[lang_id]

Figure 9. Model Card Visualization. (Sample 4)

Domain: “Audio“,
API_name: “Neleac/timesformer-gpt2-video-captioning”,
API_call: "VisionEncoderDecoderModel.from_pretrained("Neleac/timesformer-gpt2-video-captioning")”,
Parameters: “video path”,
Coarse_functionality: “Video-to-Text”,
Fine_functionality: “Video Caption”,
Descriptions: [
 "This is a model for video caption task, whose vision encoder model is timesformer-base-finetuned-k600 and the
text decoder model is gpt2",
 "The input of the model is a video, and the output of the model is the caption text of the video.",
 "The model is trained on VaTeX dataset."
],
Example codes:

import av
import numpy as np
import torch
from transformers import AutoImageProcessor, AutoTokenizer, VisionEncoderDecoderModel
device = "cuda" if torch.cuda.is_available() else "cpu"
image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = VisionEncoderDecoderModel.from_pretrained("Neleac/timesformer-gpt2-video-captioning").to(device)
video_path = "never_gonna_give_you_up.mp4"
container = av.open(video_path)
seg_len = container.streams.video[0].frames
clip_len = model.config.encoder.num_frames
indices = set(np.linspace(0, seg_len, num=clip_len, endpoint=False).astype(np.int64))
frames = []
container.seek(0)
for i, frame in enumerate(container.decode(video=0)):
 if i in indices:
 frames.append(frame.to_ndarray(format="rgb24"))
gen_kwargs = {"min_length": 10, "max_length": 20, "num_beams": 8}
pixel_values = image_processor(frames, return_tensors="pt").pixel_values.to(device)
tokens = model.generate(pixel_values, **gen_kwargs)
caption = tokenizer.batch_decode(tokens, skip_special_tokens=True)[0]
print(caption)

Figure 10. Model Card Visualization. (Sample 5)

Domain: “Image, Text“,
API_name: “lllyasviel/sd-controlnet-hed”,
API_call: "ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed")”,
Parameters: “image path, text”,
Coarse_functionality: “Multimodal-to-Image”,
Fine_functionality: “HED-Boundary-Conditioned Prompt-guided Image Generation”,
Descriptions: [
 "ControlNet is a neural network structure to control diffusion models by adding extra conditions with Stable
Diffusion v1-5. Trained with HED edge detection (soft edge), the condition image is a monochrome image with white
soft edges on a black background. The HED Edge model was trained on 3M edge-image, caption pairs.",
 "The input of the model is an HED boundary image and a text prompt, and the output of the model is an image"
],
Example codes:

from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import torch
from diffusers.utils import load_image

image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-hed/resolve/main/images/man.png")

controlnet = ControlNetModel.from_pretrained(
 "lllyasviel/sd-controlnet-hed", torch_dtype=torch.float16
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
 "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()

image = pipe("oil painting of handsome old man, masterpiece", image, num_inference_steps=20).images[0]
image.save('images/man_hed_out.png')

Figure 11. Model Card Visualization. (Sample 6)

 ID: 19
 Image Path:
 Video Path: video/Ob-VYqPMlxM.mp4
 Audio Path:
 Input Modality: video
 Ambiguity: -1
 IsAmbiguity: false
 OnetoMulti: false
 Conversations:
 From: human
 Value: "Change the breed of the animal in this video.",

 From: gpt
 Value: “unknown"

Figure 12. Instruction-Answer Pairs Visualization. (Sample 1-3)

 ID: 886
 Image Path:
 Video Path:
 Audio Path:
 Input Modality: text
 Ambiguity: -1
 IsAmbiguity: false
 OnetoMulti: true
 Conversations:
 From: human
 Value: “Designing wedding invitations with a twist of enchantment, could you illustrate a scene where 'Love Transcends Reality' is a key theme?"

 From: gpt
 Value:
 -"SG161222/Realistic_Vision_V1.4",

-"darkstorm2150/Protogen_x3.4_Official_Release",
-"dreamlike-art/dreamlike-photoreal-2.0",
-"stablediffusionapi/edge-of-realism",
-"SG161222/Realistic_Vision_V2.0"

 ID: 731
 Image Path:
 Video Path:
 Audio Path:
 Input Modality: text
 Ambiguity: -1
 IsAmbiguity: false
 OnetoMulti: false
 Conversations:
 From: human
 Value: “I was reading this article about the stock market: 'Stock markets worldwide took a hit today due to increasing tensions between the U.S.

and China. Recent trade talks between the two superpowers seem to have broken down, leading to fears of an impending trade war. Many
leading economists are predicting a downturn in global growth if the situation isn't resolved quickly. Major companies such as Apple and
Amazon saw their share prices drop significantly, with tech stocks being the hardest hit. Investors are now seeking refuge in traditional safe
havens such as gold and government bonds.' Can you help me extract the essential points and turn it into a concise paragraph? "

 From: gpt
 Value:
 -“human-centered-summarization/financial-summarization-pegasus"

Figure 13. Instruction-Answer Pairs Visualization. (Sample 4-5)

Figure 14. Instruction-Answer Pairs Visualization. (Sample 6-7)

Post-apocalyptic tales always have a gripping setting.
Can you depict a world where 'old city ruins are
intermingled with nature taking over, and a few
survivors wandering around'?

• 22h/vintedois-diffusion-v0-1
• CompVis/stable-diffusion-v1-4
• stabilityai/stable-diffusion-2
• runwayml/stable-diffusion-v1-5
• …

CompVis/stable-
diffusion-v1-4

Figure 15. Agent Output Visualization. (Sample 1)

I'm putting together a retro-style video
game and looking for help with creating a
suite of pixel art for a knight in armor,
showing front, back, and side stances.

• Onodofthenorth/SD_PixelArt_SpriteSheet_
Generator

Onodofthenorth/SD_
PixelArt_SpriteSheet_
Generator

Figure 16. Agent Output Visualization. (Sample 2)

• MCG-NJU/videomae-base-finetuned-kinetics
• facebook/timesformer-base-finetuned-k600
• facebook/timesformer-hr-finetuned-k400
• microsoft/xclip-base-patch32

MCG-NJU/videomae-
base-finetuned-kinetics

Given the high-
resolution video,
classify the action
being performed
by the person.

archery

Figure 17. Agent Output Visualization. (Sample 3)

I found this Korean movie description: '영화
'설국열차'는기후변화로인해세계가얼어붙은미래의
지구를배경으로한다. 남아있는인류는움직이는열차
안에서살아간다. 이열차는다양한계층의사람들로
나뉘어있으며, 각칸마다그들의사회적지위를
반영한다.' Can you condense this for me?

• lcw99/t5-base-korean-text-summary
• ainize/kobart-news
• csebuetnlp/mT5_m2m_crossSum_enhance

d

lcw99/t5-base-
korean-text-summary

설국열차는기후
변화로인해세계가
얼어붙은미래의

Figure 18. Agent Output Visualization. (Sample 4)

Task Subtask Api Names

Audio Classification

Event Recognition MIT/ast-finetuned-audioset-10-10-0.4593
Command Recognition MIT/ast-finetuned-speech-commands-v2

Spoken Language Identification TalTechNLP/voxlingua107-epaca-tdnn
Speaker Verification anton-l/wav2vec2-base-superb-sv
Emotion Recognition audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim
Gender Recognition m3hrdadfi/hubert-base-persian-speech-gender-recognition
Keyword Spotting superb/hubert-base-superb-ks

Audio-to-Audio

Single-Channel Speech Enhancement JorisCos/ConvTasNet Libri1Mix enhsingle 16k
Speech-to-Speech Translation facebook/xm transformer unity en-hk

Voice Conversion microsoft/speecht5 vc
Seperate Clean mpariente/DPRNNTasNet-ks2 WHAM sepclean

Audio Source Separation speechbrain/sepformer-libri3mix
Pop-to-Piano sweetcocoa/pop2piano

Feature Extraction Audio Feature Extraction LeBenchmark/wav2vec2-FR-7K-large

Audio-to-Text Automatic Speech Recognition Harveenchadha/vakyansh-wav2vec2-hindi-him-4200

Voice Activity Detection
Speaker Segmentation philschmid/pyannote-segmentation
Speaker Diarization philschmid/pyannote-speaker-diarization-endpoint

Depth Estimation Depth Estimation Intel/dpt-hybrid-midas

Image Classification

General Image Classification facebook/convnextv2-tiny-1k-224
Specific Type Image Classification Neto71/sea mammals

Style Classifier playrobin/furniture-styles

Image Segmentation

Text Guided Image Segmentation CIDAS/clipseg-rd64-refined
Semantic Segmentation apple/deeplabv3-mobilevit-small
Panoptic Segmentation facebook/detr-resnet-50-panoptic
Instance Segmentation facebook/mask2former-swin-small-coco-instance

Zero-shot Segmentation facebook/sam-vit-huge

Image-to-Image

Image Super-Resolution caidas/swin2SR-classical-sr-x2-64
Image Variations lambdalabs/sd-image-variations-diffusers

2D-to-3D openai/shap-e-img2img
Image Deblurring google/maxim-s3-deblurring-gopro
Image Dehazing google/maxim-s2-dehazing-sots-outdoor
Image Deraining google/maxim-s2-deraining-rain13k

Feaure Extraction Image Feature Extraction BridgeTower/bridgetower-base

Object Detection

Object Detection SenseTime/deformable-detr
Table Detection TahaDouaji/detr-doc-table-detection

Text-conditioned Object Detection google/owlvit-base-patch32

Visual Question Answering

Visual Question Answering Salesforce/blip-vqa-base
Chart Question Answering google/matcha-chartqa

Diagram Question Answering google/pix2struct-ai2d-base
Document Question Answering google/pix2struct-docvqa-base

Infographics Question Answering google/pix2struct-infographics-vqa-large

Table 3. Our proposed categorization system (Part 1). The first and second columns are the two levels of the categories for each task. The
third column provides an example of the candidate models.

Task Subtask Api Names

Image-to-Text

Conditional Image Caption Salesforce/blip2-flan-t5-xl
Optical Character Recognition alibaba-damo/mgp-str-base

Image Caption bipin/image-caption-generator
Document Parsing naver-clova-ix/donut-base-finetuned-cord-v2

Tag Generation SmilingWolf/wd-v1-4-convnextv2-tagger-v2
Chart-to-Table google/deplot

Zero-Shot Image Classification Zero-Shot Image Classification laion/CLIP-ViT-B-16-laion2B-s34B-b88K

Multimodal-to-Image

Face-Detection-Conditioned Prompt-guided Image Generation CrucibleAI/ControlNetMediaPipeFace
Prompt-guided Cartoonization instruction-tuning-sd/cartoonizer

Brightness-Conditioned Prompt-guided Image Generation ioclab/control v1p sd15 brightness
Prompt-guided Pixel-to-Pixel Image Editing lllyasviel/control v11e sd15 ip2p

Shuffle-Conditioned Prompt-guided Image Generation lllyasviel/control v11e sd15 shuffle
Tiled-Conditioned Prompt-guided Image Generation lllyasviel/control v11f1e sd15 tile
Depth-Conditioned Prompt-guided Image Generation lllyasviel/control v11f1p sd15 depth

Canny-Edges-Conditioned Prompt-guided Image Generation lllyasviel/control v11p sd15 canny
Line-Art-Conditioned Prompt-guided Image Generation lllyasviel/control v11p sd15 lineart
MLSD-Conditioned Prompt-guided Image Generation lllyasviel/control v11p sd15 mlsd
Normal-Conditioned Prompt-guided Image Generation lllyasviel/control v11p sd15 normalbae

Openpose-Conditioned Prompt-guided Image Generation lllyasviel/control v11p sd15 openpose
Scribble-Conditioned Prompt-guided Image Generation lllyasviel/control v11p sd15 scribble
Segment-Conditioned Prompt-guided Image Generation lllyasviel/control v11p sd15 seg

HED-Boundary-Conditioned Prompt-guided Image Generation lllyasviel/control v11p sd15 softedge
Anime-Line-Art-Conditioned Prompt-guided Image Generation lllyasviel/control v11p sd15s2 lineart anime

Prompt-guided Image Variations stabilityai/stable-diffusion-2-1-unclip

Text Classification

Sentiment Analysis DTAI-KULeuven/robbert-v2-dutch-sentiment
Emotion Analysis MilaNLProc/feel-it-italian-emotion

Offensive Language Detection Hate-speech-CNERG/bert-base-uncased-hatexplain
Topic Classification MaartenGr/BERTopic Wikipedia
Toxicity Analysis OpenAssistant/reward-model-deberta-v3-large-v2

Sensitive Text Detection apanc/russian-inappropriate-messages
Irony Detection cardiffnlp/twitter-roberta-base-irony
Bias Detection cffl/bert-base-styleclassification-subjective-neutral

Feature Extraction Text Feature Extraction facebook/bart-large

Fill-Mask Fill-Mask CLTL/MedRoBERTa.nl

Text Generation

Text Generation EleutherAI/gpt-j-6b
Prompt Generation FredZhang7/anime-anything-promptgen-v2
Code Generation NumbersStation/nsql-350M

Specific Text Genre Generation uer/gpt2-chinese-poem

Table 4. Our proposed categorization system(Part 2). The first and second columns are the two levels of the categories for each task. The
third column provides an example of the candidate models.

Task Subtask Api Names

Text Generation

Text Generation EleutherAI/gpt-j-6b
Prompt Generation FredZhang7/anime-anything-promptgen-v2
Code Generation NumbersStation/nsql-350M

Specific Text Genre Generation uer/gpt2-chinese-poem

Question Answering
Extractive Question Answering CATIE-AQ/QAmembert

Open Domain Question Answering facebook/dpr-ctx encoder-single-nq-base

Sentence Similarity Sentence Similarity intfloat/e5-small-v2

Summarization

Summarization IDEA-CCNL/Randeng-Pegasus-523M-Summary-Chinese
Title Generation JulesBelveze/t5-small-headline-generator

Keyword Generation Voicelab/vlt5-base-keywords

Text-to-Image

Text to General Style Image runwayml/stable-diffusion-v1-5
Text to RGBD Image Intel/ldm3d

Text to Specific Style Image nitrosocke/spider-verse-diffusion
Text to 3D Image openai/shap-e

Text to Spectrogram Image riffusion/riffusion-model-v1

Text-to-Speech Text-to-Speech Voicemod/fastspeech2-en-male1

Text-to-Video Text-to-Video damo-vilab/text-to-video-ms-1.7b

Text-to-Text

General Text Generation 1-800-BAD-CODE/xlm-roberta punctuation fullstop truecase
Sentence Correction KES/T5-KES

Generative Question Answering MaRiOrOsSi/t5-base-finetuned-question-answering
Question Generation allenai/t5-small-squad2-question-generation

Paraphraser cointegrated/rut5-base-paraphraser
Recipe Generation flax-community/t5-recipe-generation

Question Answering Generation google/t5-small-ssm-nq
Text Revision grammarly/coedit-large

Relation Extraction ibm/knowgl-large
Code Review microsoft/codereviewer

Commonsense Reasoning mrm8488/t5-base-finetuned-common gen
Span Sentiment Extraction mrm8488/t5-base-finetuned-span-sentiment-extraction

Distractor potsawee/t5-large-generation-race-Distractor
Detoxification s-nlp/bart-base-detox

Symbolic Music Generation sander-wood/text-to-music

Translation Translation Babelscape/mrebel-large

Zero-Shot Classification Zero-Shot Classification MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli

Video Classification Human action recognition video classification MCG-NJU/videomae-base-finetuned-kinetics

Video-to-Text
Video Question Answering kpyu/video-blip-flan-t5-xl-ego4d

Video caption Neleac/timesformer-gpt2-video-captioning

Feature Extraction Video Feature Extraction deepmind/multimodal-perceiver

Table 5. Our proposed categorization system(Part 3). The first and second columns are the two levels of the categories for each task. The
third column provides an example of the candidate models.

References
[1] Guilherme Penedo, Quentin Malartic, Daniel Hesslow,

Ruxandra Cojocaru, Alessandro Cappelli, Hamza Alobeidli,
Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay.
The refinedweb dataset for falcon llm: outperforming curated
corpora with web data, and web data only. arXiv preprint
arXiv:2306.01116, 2023.

[2] BigScience Workshop, Teven Le Scao, Angela Fan, Christo-
pher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, et al.
Bloom: A 176b-parameter open-access multilingual language
model. arXiv preprint arXiv:2211.05100, 2022.

[3] Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce
Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang, Dong Yan,
et al. Baichuan 2: Open large-scale language models. arXiv
preprint arXiv:2309.10305, 2023.

[4] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding
conditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF Intersnational Conference on
Computer Vision, pages 3836–3847, 2023.

	. Dataset Details
	. Visualization of Dataset Construction Process
	. Filtering Rules
	. API Function Boundaries
	. Prompt Construction
	. Visualization of Data Distributions
	. Crowdsourcing Details
	. Collection of text-matched multimodal input

	. Experiment Setup and Data Processing
	. Additional Experimental Results
	. Results of Multiple Options Categorized by Input Modality

	. Dataset Visualization
	. Model Card Visualization
	. Instruction-Answer Pairs Visualization
	. Agent Output Visualization

	. Categorization System

