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Abstract

In the supplemental material, we provide additional
details about the following:

• Details on implementation. (Section A)

• More analysis and ablation study. (Section B)

• Per-Scene Breakdown of the Results. (Section C)

A. Implementation Details
A.1. Hyperparameters

Default Setting. For scene representation, we set the hash
grid size L = 16 for the geometry hash grid and L = 16
for the appearance hash grid. Default resolutions for both
geometry and appearance are 0.02m. Two tiny 2-layer
decoders with 32 channels are applied to decode the color
and the SDF. For the activation functions, ReLU is used
in hidden layers, while Sigmoid and Tanh are applied to
the output layers for raw color and SDF respectively. We
use the Adam optimizer to optimize scene representation
and decoder. The learning rate for the geometry hash grid
is 5e−2, the learning rate for the appearance hash grid is
also 5e−2, and the learning rate for both MLP decoders
is 5e−3. We sample Nstr = 32 stratified points and
Nimp = 10 points within the truncated distance τtr = 6cm.
Our pixel-level uncertainty threshold is βuncm = 1e−2,
image-level uncertainty threshold is βunc = 1e−3 and
the co-visibility threshold is OCcov = 0.95. We always
optimize the camera pose during tracking and mapping if
BA is enabled. The learning rate for camera pose rotation
and translation is 1e−3. The weights of the loss function
are λrgb = 5, λdep = 0.1, λsdfc = 200, λsdft = 10 and
λsdffs

= 5 for mapping, while λrgb = 5, λdep = 1, λsdfc =
200, λsdft = 50 and λsdffs

= 10 are set for tracking. For
the tracking part, we perform the tracking process for every

frame, select Mt = 2000 sampling points, and perform 8
iterations. For the mapping part, we select Mm = 4000
sampling points, perform 13 iterations every 4 frames and
use a window of W = 20 keyframes for local bundle
adjustment. At the start of training, we use 200 iterations
for the first frame mapping. The reconstructed mesh is
extracted by marching cubes algorithm [11]. To ensure a
fair comparison, we do the same mesh culling strategy for
all benchmark baselines following Neural-RGBD [1]. In
order to present the reconstructed quality considering both
tracking and mapping, the predicted camera poses are used
for culling paths instead of ground truth poses.

Replica Dataset [13] We set L = 19 for the appearance
hash grid. Replica dataset it contains eight synthetic scenes
including 3D ground truth mesh. So based on its 3D
ground truth mesh we can also evaluate our metrics on
3D evaluation, such as Depth L1 [cm], Accuracy [cm],
Reconstruction completion [cm], and Completion ratio [<
1cm ]%. Those meshes are culled following [1] before
evaluation.

ScanNet Dataset [4] We perform the mapping process
every 5 frames, increasing the number of iterations to 20,
Nstr = 48. For tracking, iterations are increased to
20. Because of invalid depth at the edge of the image of
ScanNet, 75 pixels are culled at the edge of the image for
tracking during data pre-processing. The learning rate of
translation is set to 5e−4, and the learning rate of rotation is
3e−3.

TUM RGB-D Dataset [14] The image-level uncertainty
threshold is increased to βunc = 2e−3. We perform a
mapping process every 4 frames here and select M = 4000
sampling points for tracking and mapping. 20 pixels are
culled at the edge of the image for tracking. The iteration of
tracking is set to 20, while the iteration of mapping is also
set to 20, Nstr = 48. The learning rate of two hash grids is
set to 2e−2. The learning rate of translation is set to 1e−2,
and the learning rate of rotation is 5e−3.



A.2. Proof of Termination Probability

Our goal is to prove the accumulated termination
probability along a current sampling ray r as:

p(r) =

N∑
n=1

wn = 1

where N is the number of sampling points along the ray r,
the weight wn is defined as:

wn = Tn · (1− exp (−σ (pn)))

where pn is one sampling point along this ray, Tn is the
transmittance of all previous sample points.

Tn = exp

(
−

n−1∑
k=1

σ (pk)

)
First, we expand the weight wn:

N∑
n=1

wn =

N∑
n=1

(
exp

(
−

n−1∑
k=1

σ (pk)

)
· (1− exp (−σ (pn)))

)
Second, introduce a recursive relationship for

transmittance. We know that the relationship between
Tn and Tn+1 is:

Tn+1 = Tn · exp (−σ (pn))

So we can expand term by term and see the pattern:

T1 = 1

T2 = exp (−σ (p1))

T3 = exp (−σ (p1)) · exp (−σ (p2)) = exp (−σ (p1)− σ (p2))

Thus, for any n :

Tn = exp

(
−

n−1∑
k=1

σ (pk)

)
According to Equation:

N∑
n=1

wn =

N∑
n=1

(
exp

(
−

n−1∑
k=1

σ (pk)

)
· (1− exp (−σ (pn)))

)
Look at it item by item:

w1 = T1 · (1− exp (−σ(p1)))

= 1 · (1− exp (−σ(p1)))

= 1− exp (−σ(p1))

w2 = T2 · (1− exp (−σ(p2)))

= exp (−σ(p1)) · (1− exp (−σ(p2)))

= exp (−σ(p1))− exp (−σ(p1)− σ(p2))

w3 = T3 · (1− exp (−σ(p3)))

= exp (−σ(p1)− σ(p2)) · (1− exp (−σ(p3)))

= exp (−σ(p1)− σ(p2))− exp (−σ(p1)− σ(p2)− σ(p3))

Continuing in this way, we can discover the structure of
each item:

N∑
n=1

wn =(1− exp (−σ (p1)))

+ (exp (−σ (p1))− exp (−σ (p1)− σ (p2)))

+ (exp (−σ (p1)− σ (p2))

− exp (−σ (p1)− σ (p2)− σ (p3)))

+ · · ·

+

(
exp

(
−

N−1∑
k=1

σ (pk)

)
− exp

(
−

N∑
k=1

σ (pk)

))
All the intermediate terms cancel each other out, leaving

only the first and last terms:

N∑
n=1

wn = 1− exp

(
−

N∑
k=1

σ (pk)

)
As N tends to infinity, assuming all densities are

cumulative in the observed regions, the exponential part of
the last term tends to negative infinity, then:

exp

(
−

N∑
k=1

σ (pk)

)
≈ 0

So,
N∑

n=1

wn = 1− 0 = 1

By the above steps, we have proved that the cumulative
sum of all weights wn on a ray for observed area is equal to
1. However, in unobserved regions where the density values
σ(pk) are very small or zero, the exponential term will tend
to 1, so

N∑
n=1

wn = 1− 1 = 0

Therefore, the termination probability is proven to lie within
the range (0, 1).

A.3. Co-visibility Check

Loop detection is implemented based on sample point
remapping. We sample M = 50 pixels for every keyframe
in the keyframes database, sample N = 8 sample points
along each ray, given the camera’s internal and external
parameters, and map these points back to the current frame.
If the overlap coefficient is greater than 0.95, we consider
that a loop closure has occurred. In order to avoid too
short a time interval and too short a range of motion for
loop closure detection, we set a minimum threshold of 100
frames between the two points where a loop closure occurs.



B. More Analysis and Ablation Study
B.1. Hash Grid Size Analysis

To investigate the distinct requirements of geometry
and appearance for spatial representation, we conduct our
experiments on the synthetic Replica dataset. We evaluate
different hash grid size combinations to investigate the
sensitivity of appearance and geometry to hash grid size
in Tab. 1, while Tab. 2 compares the impact of hash grid
size on model size and speed in frame per second(FPS).
We compare the results with BSLAM [8],Co-SLAM [15]
and ESLAM [9] at index 3, index 5, index 7 respectively.
In these plots, the numbers in parentheses (hg, ha) report
the geometry hash grid size and appearance hash grid size
respectively. Experiments show that the reconstruction and
rendering quality can be further improved by increasing
the hash grid size. However, for equal model sizes,
allocating more memory to appearance yields more benefits
on rendering quality and completeness (compare the
combination of index 4 (hg = 16, ha = 19) and index
9 (hg = 19, ha = 16)). We interpret this phenomenon
by considering that color information is a higher-frequency
signal compared to geometric information. The implication
here is that when computational resources are limited, we
should allocate more resources to the appearance signal.
In terms of the relation between hash grid size and FPS,
it is worth noting that when increasing the hash grid size
combination from (hg = 16, ha = 19) to (hg = 22, ha =
22), the speed in FPS only decreases from 8.3 fps to 6.6 fps.

B.2. Strategic BA Analysis
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Figure 1. Impact of Translational and Angular Velocities on
Uncertainty. We can observe the correlation between uncertainty
and both translational velocity and angular velocity. Higher
velocities or accelerations tend to result in higher uncertainty.
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Table 1. Impact of (SDF hash grid size, Appearance
hash grid size) on PSNR [dB] and Completion Rate [<
1cm%] on the Replica dataset.

1 2 3 4 5 6 7 8 9
0

10

20

30

40

(14,14)(15,15)
(16,16)

(16,19)

(17,17)

(18,18)

(19,16)

(19,19)

(20,20)

Index

M
od

el
Si

ze
(M

B
)

(a) Impact on Model Size

Ours

ESLAM

Co-SLAM

BSLAM

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10
(14,14)

(15,15)

(16,16)

(16,19)

(17,17)

(18,18)

(19,16)
(19,19)

(20,20)

Index

FP
S

(b) Impact on FPS.

Ours

ESLAM

Co-SLAM

BSLAM

Table 2. Impact of (SDF hash grid size, Appearance
hash grid size) on Model Size and FPS on the Replica
dataset.

Uncertainty vs. Velocity. To analyze the relationship
between velocity and uncertainty, we conducted
experiments on scene0000 from ScanNet [4].



The camera’s motion state is described in terms of
translation and rotation {Ti|Ri}. In Fig. 1, we visualize
the translational velocity and angular velocity, with
the corresponding image-level uncertainty displayed
below each. The results show that higher velocities or
accelerations can easily cause the camera to move into
unseen areas before, leading to increased uncertainty. This
figure exposes the relationship between our definition of
uncertainty and the state of camera motion, justifying our
definition of uncertainty.
Impact of Strategic BA on Uncertainty. We investigated
the impact of using strategic Bundle Adjustment (BA)
on image-level uncertainty on scene0000 from ScanNet
[4]. As shown in Fig. 2, using only constant global BA
results in high uncertainty, as indicated by the orange line.
Similarly, the green line represents high uncertainty with
only local BA. The red line shows suboptimal results when
using global BA and local BA without local loop closure
optimization (LLCO). However, with our full strategic BA
the uncertainty could be reduced significantly on average as
shown in blue line. This implies more accurate localization
and improved rendering. Further reduction in uncertainty
demonstrates the effectiveness of our LLCO approach. In
Fig. 3, we present the visual results. We visualize rendered
image, depth uncertainty, and pixel-level uncertainty in
three rows respectively. It is evident that under strategic
BA, the quality of rendered images is noticeably enhanced,
and the corresponding depth uncertainty is also lower,
indicating higher geometric quality. The depth uncertainty
is calculated as follows:

d̂unc =

√√√√ N∑
i=1

wi

(
d̂− di

)2
(1)

where wi is the weight corresponding to Equation(2) in
main paper, d̂ is predicted depth, and di represents the
distance from the camera center to the current sample point
xi along this ray. Pixel-level uncertainty in the third column
is also lower with this strategy.
Plug-in Capability. The effectiveness of our strategy has
also been validated on BSLAM [8]. Based on image-level
uncertainty and co-visibility check, we dynamically activate
an additional mapping process beyond the global BA.
The results in Tab. 3 show improvements in all metrics,
benefiting from our uncertainty-aware strategy. This
demonstrates the plug-in capability of our approach.

B.3. Ablation on Model Design

In order to justify our choice of a model-free uncertainty
model, we conduct also experiments with a learnable
uncertainty model. As shown in Fig. 4, in addition to using
two sparse grids to represent geometry and appearance
separately, we use a third grid to model depth uncertainty
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Figure 2. Impact of different keyframe selection on
Uncertainty. Here we compare the changing image-level
uncertainty per frame with different keyframe selection strategies.
The results indicated by the blue line show that image-level
uncertainty is significantly reduced, achieving optimal outcomes
with our proposed strategic BA (local BA + global BA + LLCO).

Table 3. Analysis of the impact of our strategic BA on BSLAM [8]
(Sec. 3.4 in the main paper). The experiment is conducted on
Replica [13], and the metrics are ATE RMSE (cm), reconstruction
accuracy (cm), reconstruction completion (cm), completion ratio
and PSNR. BSLAM [8] can also benefit from our strategy.

Method ATE Acc. Comp. Ratio PSNR
(cm)↓ (cm) ↓ [< 1cm%] ↑ (dB) ↑

BSLAM [8] 1.19 1.12 57.18 29.55
BSLAM w/ Our strategic BA 1.07 1.01 58.36 29.83

based on the Gaussian assumption inspired by [6]. For
depth uncertainty, a model posterior assumption is made
from the Bayesian perspective, similar to Bayes’ Rays
[7]. Our experiments show that this idea not only brings
undesirable increased model complexity, making the model
much slower, but also leads to poorer results in terms of
reconstruction quality (corresponding to main paper Sec.
4.3).

The following paragraph explains how we design
learnable uncertainty to reweight the depth term loss
function.
Gaussian Assumption Uncertainty: Assume that the
residuals (errors) between the estimated depth d̂ and the true
depth D follow a Gaussian distribution with variance σ2:

d̂ ∼ N (D,σ2) (2)

The probability density function (PDF) of a normal
distribution is given by:

p(d̂|D,σ2) =
1√
2πσ2

exp

(
− (d̂−D)2

2σ2

)
(3)

To maximize the likelihood, we equivalently minimize the
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Figure 3. Impact of Strategic BA on Rendering and Uncertainty Visualization. Our proposed strategic BA integrates global BA,
local BA, and LLCO. This approach achieves the highest rendered image quality, as indicated by the PSNR (dB) metric. The second
row presents visualized pixel-level uncertainty, while depth uncertainty illustrates geometric reconstruction in the third row. The depth
uncertainty, defined in Eq. (1), shows a continuous variation in visualized uncertainty, providing a clearer demonstration of the superiority
of our approach.
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Figure 4. Ablation on Gaussian Assumption Uncertainty
Model. We use three grids to represent geometry, appearance, and
learnable uncertainty respectively.

negative log-likelihood. The negative log-likelihood for a
single observed ray is given by:

− log p(d̂|D,σ2) =
(d̂−D)2

2σ2
+

1

2
log(2πσ2) (4)

For simplicity, we often drop the constant term
1
2 log(2π) since it does not affect the optimization. Here
we let β = σ2. In practice, we work with an estimate of the
variance β through a third grid parallel with the geometry
and appearance grid. So, the term we need to minimize is:

Lsingle =
(d̂−D)2

2σ2
+
1

2
log σ2 =

(d̂−D)2

2β
+
1

2
log β (5)

If we have a set of depth measurements Rd, we sum
the negative log-likelihoods for all rays r in the set Rd.

Additionally, we normalize by the number of elements |Rd|
to get the average loss:

This matches the given loss function:

Ld =
1

|Rd|
∑
r∈Rd

(
1

2β
(d̂r −Dr)

2 +
1

2
log β

)
(6)

The first term (d̂−D)2

2β penalizes large errors more if
the predicted uncertainty β is small. The second term
1
2 log β prevents the model from predicting an arbitrarily
large uncertainty to minimize the first term. By balancing
these two terms, the loss function encourages the model
to provide both accurate depth estimates and reasonable
uncertainty estimates.

Dataset Method Tracking/Rendering FPS ↑ params ↓
RMSE [cm] ↓ PSNR [dB] ↑

Replica [13] Gaussian 1.175 27.27 7.06 14.65M
Ours 0.45 31.62 8.37 12.69M

ScanNet [4] Gaussian 11.93 18.06 3.57 5.13M
Ours 7.01 21.77 4.88 3.39M

TUM RGB-D [14] Gaussian 2.16 19.30 1.73 5.38M
Ours 2.05 21.23 2.72 3.58M

Figure 5. Gaussian Assumption Model vs. Ours.

Our system demonstrates superior tracking accuracy
and rendering quality compared to SLAM systems that
rely on Gaussian assumptions as shown in Fig. 5.
Additionally, our system outperforms in terms of speed
and parameter efficiency. Under the Gaussian assumption,
depth uncertainty is typically modeled using an additional
hash grid for separate estimation. This introduces extra
variables that need optimization, which introduces further
complexities and disturbances in the SLAM system.
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Figure 6. Gaussian Assumption Model vs. Ours. Our model
demonstrates superior rendering quality, as evaluated by PSNR
(dB) ↑. Depth uncertainty, calculated using Eq. (1), is visualized
for comparison. Our method visibly reduces depth uncertainty, as
clearly shown in the visualizations.

In Fig. 6, we conducted a comparison of rendering
quality and depth uncertainty between the two methods
across three datasets. The superiority of our approach
is evident, particularly on real-world datasets such as
TUM-RGBD [14] and ScanNet [4], where the visualized
depth uncertainty clearly highlights the advantages of our
method.

Moreover, in addition to aboving scene representation,
we also experimented with the memory-efficient tri-plane
[2] method for encoding geometry and appearance

respectively. In Tab. 6, rows a) through d) provide
quantitative results on the Replica dataset, while Fig. 12
presents the corresponding qualitative visualizations. The
results show that using two hash grids for encoding provides
the best performance.

B.4. Model Capability Analysis

To demonstrate the high capability of our model in
reconstructing quality scenes and to fairly compare the
model’s upper limits, we compared our method with
state-of-the-art dense implicit SLAM approaches, including
ESLAM [9] and Co-SLAM [15] on Replica dataset [13].
We standardized the mapping iterations and tracking
iterations to 30, and set the number of sampling points
to 5000. The results in Tab. 4 indicate that our method
achieves superior performance in terms of evaluation
metrics localization accuracy ATE RMSE, reconstruction
accuracy, completion ratio, PSNR, and computational
efficiency.

Method ATE Acc. Comp. Ratio PSNR Time
(cm)↓ (cm) ↓ [< 1cm%] ↑ (dB) ↑ Mins ↓

ESLAM [9] 0.40 0.91 63.51 31.63 21.53
Co-SLAM [15] 0.75 1.07 57.79 31.77 11.92
ours 0.29 0.84 68.35 32.82 11.17

Table 4. Capability analysis of the effect of the number of
optimization iterations during mapping and tracking on our
method’s reconstruction quality.

B.5. Model Convergence Speed Analysis

BSLAMCo-SLAM

Ours GT

25.41dB  26.25dB  

28.09dB  

Figure 7. Rendering Comparison on Replica dataset [13].
Ours shows the best rendering quality compared to state-of-the-art
methods BSLAM [8] and Co-SLAM [15] among dense implicit
SLAM methods. Please zoom in for details.

To compare model convergence speed and rendering
quality, we conducted experiments on the synthetic Replica
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Figure 8. Comparative rendering quality convergence on the
Replica dataset [13]. We set mapping iterations to 200 steps
for one frame and recorded PSNR at each iteration. Our model
showed stable, monotonic growth in PSNR, attributed to its
decoupled scene representation. In contrast, ESLAM exhibits
higher variance, and Nice-SLAM, Co-SLAM, and BSLAM have
lower PSNR values, indicating slower convergence and poorer
performance.

dataset and the realistic TUM RGB-D dataset. Fig. 7
and Fig. 8 illustrate the qualitative rendering quality
and quantitative changes over iterations on the Replica
dataset. Our model exhibited the best rendering quality
with a stable, monotonically increasing curve, attributed
to its decoupled grid-based scene representation. On
the real-world TUM RGB-D dataset, as shown in Fig. 9
and Fig. 10 our model also outperformed Nice-SLAM,
ESLAM, Co-SLAM, and BSLAM. The other models
showed instability (e.g., ESLAM on Replica, Co-SLAM on
TUM-RGBD) and suboptimal rendering quality.

B.6. Runtime and Memory Analysis

In Tab. 5, we compare runtime and memory usage,
benchmarking all methods on NVIDIA GeForce RTX
4090 GPU using room0 of Replica [13], scene0000 of
ScanNet [4] and freiburg2-xyz of TUM-RGBD [14].
We report tracking and mapping times per iteration and
compare iteration steps to show convergence speed. The
results show that our method achieved competitive real-time
performance compared to Co-SLAM.

B.7. Ablation on Reweighting Term

Here, corresponding to Section 4.3 of the main paper,
we provide further explanation of the reweighting term
to validate our choice. In the tracking and mapping
processes, the loss functions consist of three loss terms:

BSLAMCo-SLAM

Ours GT

18.55dB  

22.80dB  

19.79dB  

Figure 9. Rendering Comparison on TUM RGB-D [14].
Ours shows the best results compared to state-of-the-art methods
BSLAM [8] and Co-SLAM [15] among dense implicit SLAM
methods.

50 100 150 200
15

20

25

SAT [3]BUTD-DETR [3]ViewRefer [3]

Mapping Iters

PS
N

R

Nice-SLAM [17]
ESLAM [9]

Co-SLAM [15]
BSLAM [8]

Ours

Figure 10. Comparative rendering quality convergence on TUM
RGB-D [14]. We set the mapping process iterations to 200
steps and recorded the PSNR for each iteration. The variation
curve shows a stable monotonic increase, demonstrating the
model’s stability on real-world challenging datasets. In contrast,
Co-SLAM’s variation curve oscillated, reflecting poorer stability
in rendering. Meanwhile, Nice-SLAM, ESLAM, and BSLAM
showed suboptimal results due to insufficient model capability and
slower convergence.

(Lsdf , Ldep, Lrgb). We aim to use pixel-level uncertainty
to select effective information and progressively filter out
outliers to enhance localization accuracy and rendering
quality. If reweighting is applied, we denote it as Y , and
if not, we denote it as N . For example, Y Y Y − Y Y N
means, we reweight all (Lsdf , Ldep, Lrgb) three terms
in tracking process, and only reweight (Lsdf , Ldep) in



Method Tracking Mapping FPS↑ Time params.↓[ms x it.] ↓ [ms x it.] ↓ Mins↓
R

ep
lic

a
Nice-SLAM [17] 6.5 x 10 29.3 x 0 1.8 18.51 12.13M
Co-SLAM [15] 4.6 x 10 6.6 x 10 9.07 3.67 1.72M
ESLAM [9] 7.9 x 8 18.8 x 15 5.55 6.01 6.78M
BSLAM [12] 11 x 20 15 x 20 1.66 20.3 17.38M
Ours 7.0 x 8 8.1 x 13 8.37 4.02 12.69M

Sc
an

N
et

Nice-SLAM [17] 11.3 x 50 41.2x60 1.34 57.8 22.04M
Co-SLAM [15] 5.6 x 20 12.7 x 10 5.7 17.2 1.74M
ESLAM [9] 13.41 x 30 22.5 x 30 1.57 40.6 17.63M
BSLAM [12] 250 x 20 400 x 20 0.52 176 18.5M
Ours 6.3 x 20 11.7 x 30 4.88 20.8 3.39M

T
U

M
R

G
B

-D Nice-SLAM [17] 33 x 200 103 x 60 0.09 577 120.95M
Co-SLAM [15] 4.3 x 20 15.6 x 10 6.4 8.5 1.68M
ESLAM [9] 20.5 x 200 22.3 x 60 0.33 175 9.51M
BSLAM [12] 251 x 20 370 x 20 0.95 59 19.76M
Ours 12.3 x 20 13.7 x 20 2.7 21.3 3.58M

Table 5. Runtime and Memory Usage Comparison.

mapping process.
As shown in Fig. 11, column d) yields the optimal

results. Not only does it produce the highest quality
rendered color image (highest PSNR [dB]), but the
pixel-level uncertainty map and the depth uncertainty
map also demonstrate higher quality depth information
estimation. Compared to column e), where we do
not apply reweighting to the color loss term during the
mapping process, our approach compensates effectively for
invalid depth caused by the sensor itself, resulting in finer
geometric reconstruction.

C. Per-Scene Breakdown of the Results.
In this section, we provide more per-scene qualitative

and quantitative results. Tab. 7 and Tab. 8 present
the quantitative results for 3D and 2D metrics on the
Replica dataset [13] for each scene, respectively. Figs. 13
to 16 show the qualitative reconstructed meshes. The
results for Nice-SLAM [17], Co-SLAM [15], ESLAM
[9], and BSLAM [8] are obtained using their open-source
code over five experimental runs. For PLG-SLAM [5],
the authors only provide us the reconstructed meshes
on the Replica dataset, so the qualitative comparison is
not provided here. Additionally, although this paper
primarily investigates the application of uncertainty in
real-time implicit NeRF-SLAM, for a broader qualitative
comparison of reconstruction quality, we also include
explicit scene representations, such as Loopy-SLAM [10].
Overall, the results demonstrate that our method achieves
finer reconstructions among all implicit methods while
addressing the hole-filling limitations of explicit scene
representations. For real-world datasets, Fig. 17 shows
the reconstruction results on ScanNet [4], and Figs. 18
to 20 display our reconstruction results on TUM RGB-D
[14]. These results indicate that our method achieves more
precise detail reconstruction and high-fidelity rendering,
which we attribute to robust scene representation and an
uncertainty-aware strategy.
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Figure 11. Ablation on Reweighting. In the tracking and mapping processes, the loss functions consist of three loss terms: (Lsdf , Ldep,
Lrgb). If reweighting is applied, we denote it as Y , and if not, we denote it as N . Column d) YYY-YYN indicates that we apply pixel-level
uncertainty reweighting to all terms except for the color loss term Lrgb in the mapping process. With this uncertainty-guided reweighting
strategy, we achieve the best rendering quality and depth estimation.

Algorithm 1 Our Uncertainty-Aware Algorithm

1: i = 1 ▷ Initialize index
2: P ▷ Estimated camera pose
3: n ▷ Fixed-frequency for constant global BA
4: N ▷ Number of frames of current RGB-D sequence
5: θ ▷ Scene representation
6: Optimize() ▷ Optimazation function with pixel-level uncertainty reweighting
7: while i < N do
8: if i = 1 then
9: P1 = P gt

1 ▷ Initialize first camera pose with ground truth
10: Optimize (θ1) ▷ Optimize scene representation at the first frame
11: i = i+ 1
12: end if
13: if i > 1 then
14: Optimize (Pi) ▷ Tracking process for each frame
15: end if
16: if β > βunc then ▷ Uncertainty check
17: Optimize (θlocal, Plocal) ▷ Local BA
18: i = i+ 1
19: else if OCcov > τcov then ▷ Co-Visibility check
20: Optimize (θLLCO, PLLCO) ▷ Local loop closure optimization
21: i = i+ 1
22: end if
23: if i mod n == 0 then
24: Optimize (θglobal, Pglobal) ▷ Global BA for every n frame
25: i = i+ 1
26: end if
27: end while



Methods Reconstruction & Rendering Localization [cm]
Acc. Comp. Ratio Depth L1 PSNR RMSE

a) Gaussian assumption uncertainty with third grid 1.79 31.52 3.75 27.33 1.51
b) Coupled scene representation with one grid 1.05 63.15 0.94 30.12 0.51
c) Grid for geometry and tri-plane for appearance 1.01 64.69 0.93 30.98 0.47
d) Tri-plane for geometry and grid for appearance 1.17 63.82 0.97 21.32 0.50
e) w/o camera pose optimization in mapping 1.89 26.88 1.76 27.56 3.52
f) Only global BA in mapping 0.96 66.01 0.95 31.32 0.49
g) Only local BA in mapping 1.01 65.21 0.91 30.87 0.55
h) Global + local BA in mapping 0.94 66.34 0.89 31.51 0.45
Ours 0.92 66.86 0.89 31.62 0.45

Table 6. We conduct experiments on Replica [13] to verify the effectiveness of our method. Our full model achieves better completion
reconstructions and more accurate pose estimation results.
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Figure 12. Ablation on Model Design. We compare different scene representation combinations on Replica [13] room0 and evaluate
with metrics PSNR and completion ratio[< 1cm%]. Hash-Hash-UncM denotes using hash grids for geometry and appearance, with
a learnable uncertainty model. Hash-Tri-N uses a hash grid for geometry, a tri-plane for appearance, and our proposed model-free
method for uncertainty estimation. The results show that using hash grids for both geometry and appearance, combined with the model-free
uncertainty definition, achieves the best results.



room0 room1 room2 office0 office1 office2 office3 office4 Avg.

N
ic

e-
SL

A
M

][
17

] Depth L1 [cm] ↓ 2.51 2.65 3.37 2.12 2.20 4.53 4.30 3.79 3.18

Acc. [cm] ↓ 1.51 1.44 1.62 1.34 1.02 1.71 2.02 4.55 1.90

Comp. [cm] ↓ 1.50 1.39 1.54 1.42 1.08 1.57 1.82 1.94 1.53

Comp. Ratio [< 5cm%] ↑ 98.33 98.81 97.37 97.6 98.08 97.65 95.81 95.92 97.45

Comp. Ratio [< 3cm%] ↑ 95.20 95.30 91.45 94.82 95.52 92.91 90.30 88.10 92.95

Comp. Ratio [< 1cm%] ↑ 32.63 39.07 35.17 42.37 67.39 31.22 24.07 23.48 36.93

C
o-

SL
A

M
[1

5]

Depth L1 [cm] ↓ 1.51 2.38 3.00 1.51 1.46 2.68 2.81 1.85 2.15

Acc. [cm] ↓ 1.11 1.33 1.22 0.99 0.71 1.36 1.29 1.24 1.16

Comp. [cm] ↓ 1.04 1.30 1.18 0.90 0.71 1.29 1.35 1.15 1.12

Comp. Ratio [< 5cm%] ↑ 98.84 99.05 97.85 98.52 98.62 97.52 98.65 97.12 98.27

Comp. Ratio [< 3cm%] ↑ 97.82 97.15 94.45 97.87 97.57 96.28 95.89 94.46 96.44

Comp. Ratio [< 1cm%] ↑ 54.69 40.08 55.47 71.35 87.41 46.93 39.21 52.35 55.94

E
SL

A
M

[9
]

Depth L1 [cm] ↓ 0.97 1.07 1.28 0.86 1.26 1.71 1.43 1.06 1.18

Acc. [cm] ↓ 1.07 0.85 0.93 0.85 0.83 1.02 1.21 1.15 0.97

Comp. [cm] ↓ 1.12 0.88 1.05 0.96 0.81 1.09 1.42 1.27 1.05

Comp. Ratio [< 5cm%] ↑ 99.06 99.64 98.84 98.34 98.85 98.60 96.80 97.65 98.47

Comp. Ratio [< 3cm%] ↑ 98.84 99.24 96.73 97.89 98.02 98.02 96.31 96.54 97.70

Comp. Ratio [< 1cm%] ↑ 53.06 70.27 62.15 73.11 84.13 59.32 46.93 49.06 62.25

B
SL

A
M

[8
]

Depth L1 [cm] ↓ 1.44 1.43 3.05 1.64 1.95 4.18 4.10 2.43 2.52

Acc. [cm] ↓ 1.02 0.92 1.01 0.86 0.69 1.46 1.75 1.27 1.12

Comp. [cm] ↓ 1.05 0.94 1.15 0.91 0.76 1.34 1.39 1.26 1.1

Comp. Ratio [< 5cm%] ↑ 99.48 99.69 98.22 98.97 99.27 98.8 98.28 99.28 98.99

Comp. Ratio [< 3cm%] ↑ 98.53 98.74 94.98 97.64 97.68 94.46 95.57 97.71 96.91

Comp. Ratio [< 1cm%] ↑ 54.64 65.52 56.17 71.43 84.26 46.52 39.97 40.61 57.18

O
ur

s

Depth L1 [cm] ↓ 0.81 0.77 1.13 0.70 1.11 1.52 1.15 0.99 0.89
Acc. [cm] ↓ 0.97 0.78 0.85 0.76 0.62 0.92 1.10 1.15 0.92
Comp. [cm] ↓ 0.99 0.78 0.93 0.77 0.67 0.93 1.18 1.13 0.92
Comp. Ratio [< 5cm%] ↑ 99.69 99.84 99.21 99.21 99.25 99.19 98.25 98.99 99.20
Comp. Ratio [< 3cm%] ↑ 99.15 99.47 96.75 98.96 98.15 97.75 97.12 96.75 98.01
Comp. Ratio [< 1cm%] ↑ 57.57 74.99 69.53 76.76 88.18 62.78 50.91 54.19 66.86

Table 7. Per-scene quantitative reconstruction evaluation on Replica [13] dataset. Our method achieves consistently better reconstruction in
comparison to Nice-SLAM [17], Co-SLAM [15], ESLAM [9] and BSLAM [8]. We report Depth L1, reconstruction accuracy, completion,
and completion ratios of 5cm, 3cm and 1cm respectively, reflecting our advantages in reconstruction geometry in detail.



Method Metric Rm 0 Rm 1 Rm 2 Off 0 Off 1 Off 2 Off 3 Off 4 Avg.

Nice-SLAM [17]
PSNR [dB] ↑ 22.12 22.47 24.52 29.07 30.34 19.66 22.23 24.94 24.42

SSIM ↑ 0.689 0.757 0.814 0.874 0.886 0.797 0.801 0.856 0.809

LPIPS ↓ 0.330 0.271 0.208 0.229 0.181 0.235 0.209 0.198 0.233

Vox-Fusion [16]
PSNR [dB] ↑ 22.9 22.36 23.91 27.79 29.83 20.33 23.47 25.21 24.4

SSIM ↑ 0.683 0.751 0.798 0.857 0.876 0.794 0.803 0.847 0.801

LPIPS ↓ 0.303 0.269 0.234 0.241 0.184 0.243 0.213 0.199 0.236

Co-SLAM [15]
PSNR [dB] ↑ 27.12 27.94 29.27 34.13 35.04 28.53 28.81 31.29 30.27

SSIM ↑ 0.908 0.900 0.935 0.962 0.970 0.939 0.942 0.957 0.939

LPIPS ↓ 0.316 0.293 0.258 0.207 0.191 0.257 0.222 0.227 0.246

ESLAM [9]
PSNR [dB] ↑ 27.10 28.41 29.16 34.59 34.29 28.97 28.57 30.51 30.19

SSIM ↑ 0.914 0.910 0.938 0.966 0.963 0.946 0.948 0.948 0.942

LPIPS ↓ 0.295 0.294 0.240 0.178 0.208 0.239 0.194 0.295 0.243

BSLAM [8]
PSNR [dB] ↑ 26.43 28.67 28.44 33.27 33.92 27.68 28.14 29.85 29.55

SSIM ↑ 0.902 0.9179 0.919 0.950 0.963 0.933 0.939 0.9438 0.9335

LPIPS ↓ 0.300 0.2523 0.2618 0.201 0.195 0.246 0.205 0.2274 0.2361

Ours
PSNR [dB] ↑ 28.07 30.16 30.87 36.35 35.62 29.98 30.06 31.85 31.62
SSIM ↑ 0.927 0.940 0.955 0.978 0.977 0.961 0.962 0.965 0.958
LPIPS ↓ 0.241 0.201 0.172 0.145 0.167 0.231 0.156 0.169 0.185

Table 8. Per-scene quantitative rendering evaluation on Replica [13]. Our method achieves consistently better rendering in comparison to
Nice-SLAM [17], Co-SLAM [15], ESLAM [9] and BSLAM [8]. We report the PSNR, SSIM and LPIPS as metrics to reflect the rendering
quality. Our model demonstrates advanced results across all metrics.
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Figure 13. Mesh Evaluation on Replica [13] Office-0. Notably, our method can present fine geometric structures while also achieving
better scene completion for unobserved regions compared to explicit Loopy-SLAM [10]. Compared to implicit methods such as Co-SLAM
[15], BSLAM [8], and PLG-SLAM [5], our method captures finer high-frequency geometric details. For example, the chair back, chair
legs, and the carpet. For appearance, rendered objects on the table are also better.
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Figure 14. Mesh Evaluation on Replica [13] Room-2. Our method achieves finer geometric and appearance reconstruction. For
appearance: the patterns on the curtains and the detailed textures on the cabinet surface. For geometry: the vase on the cabinet and
the cabinet legs. Please zoom in for more details.
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Figure 15. Mesh Evaluation on Replica [13] Office-2. For appearance: our rendered floor has higher quality, clearly distinguishing
the floor patterns, as well as the textures on the pillows on the sofa. For geometry: we zoomed in on the table, and our method reconstructs
sharper edges and smoother surfaces.
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Figure 16. Mesh Evaluation on Replica [13] Office-4. For appearance: our rendered floor quality is higher, clearly distinguishing the
floor patterns, as well as the clock on the wall. For geometry: we reconstructed more of the office chair’s geometric structure, such as the
legs and the backrest. The geometry of the sofa in the corner also demonstrates the superiority of our algorithm.
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Figure 17. Mesh Evaluation on ScanNet [4]. Explicit Loopy-SLAM [10] and implicit Co-SLAM [15] are listed here for comparison.
For appearance: Our method achieves higher rendering quality compared to the ground truth (GT) mesh, as seen texture of chairs, objects
on the desk in scene0059, and the coffee machine on the table in scene0207. For geometry: More detailed and complete results are
reconstructed, such as table and chairs in scene0059, the surface of desks in scene0207.
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Figure 18. Mesh Evaluation on TUM RGB-D [14]. Because there is no ground truth mesh for the TUM RGB-D dataset, we provide an
image to facilitate qualitative comparison. We extensively compare the reconstruction quality with implicit methods such as ESLAM [9],
Co-SLAM [15], and BSLAM [8], as well as the explicit method Loopy-SLAM [10]. The results show that our method achieves superior
quality in both rendering and geometry. Our method captures finer geometric details and higher fidelity rendering, such as the legs of the
chair, the teddy bear, and the captured objects on the table.
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Figure 19. Mesh Evaluation on TUM RGB-D [14]. Because there is no ground truth mesh for the TUM RGB-D dataset, we provide an
image to facilitate qualitative comparison. For example, our method accurately reconstructs details such as the Rubik’s cube on the table,
the shopping bag, and the chair.
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Figure 20. Mesh Evaluation on TUM RGB-D [14]. While ESLAM [9] and BSLAM [8] can not capture geometric details such as cup
and mouse on table, Co-SLAM [15] can not reconstruct thin geometric structure, such thin table surface. Our method shows outstanding
performance.
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