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1. Experiment Derails
In this chapter, we will provide more experimental de-

tails, including the detailed introduction of the evaluation
metrics and datasets used in the experiments.

1.1. Evaluation Metric

1.1.1 Unconditional Text Generation

When assessing the motion-to-text task, we mainly focus
on metrics such as Length, Bleu [2], Rouge [1], Cider [3],
and BertScore [4]. Length: This metric calculates the aver-
age length of the generated text, providing insights into text
length consistency. Bleu: BLEU measures the similarity
between the generated text and reference text based on n-
gram overlap. Rouge: ROUGE evaluates the quality of the
generated text by comparing it with reference text in terms
of recall of n-grams. Cider: CIDEr assesses the quality of
generated text by considering consensus among human an-
notators. BertScore: BERTScore evaluates the quality of
generated text by comparing it with reference text using
contextual embeddings from pre-trained BERT models.

1.1.2 Motion Completion

For the motion completion task, we also utilize metrics like
Average Displacement Error (ADE) and Final Displace-
ment Error (FDE). ADE: ADE measures the average de-
viation between the predicted positions of key points or
joints in a motion sequence and their actual positions. It
calculates the average Euclidean distance of corresponding
points across all frames in the sequence. FDE: FDE quanti-
fies the disparity between the predicted position of the last
frame in a motion sequence and its actual position. It quan-
tifies the accuracy of the model in predicting the final state
of the motion.

1.2. Dataset

1.2.1 ROCStories

The ROCStories dataset serves as a benchmark dataset for
evaluating natural language understanding and generation

models. It comprises 98,162 stories, each consisting of
5 sentences. These stories aim to capture common sense,
emotions, and temporal relationships expressed in everyday
life.

1.2.2 AG News Topic Classification

The AG News Topic Classification dataset is a collection
of news articles designed for text classification tasks. It
encompasses four main topic categories: World, Sports,
Business, and Technology and comprises a total of 120,000
training instances, each containing article titles and descrip-
tions.

1.2.3 Motion-X

The inclusion of Motion-X, 52.4k motions annotated by
more detailed textual descriptions, aims to enhance the to-
kenizer’s representation of human motion, facilitating inte-
gration with textual information and thereby benefiting mo-
tion generation. We employed the following methods for
data normalization and augmentation:

1. Uniform Skeleton Normalization: To ensure consis-
tency across various data sources, motion data under-
goes normalization to a uniform skeleton model. This
involves scaling the skeleton based on leg lengths to
adjust for differences in skeletal structure and propor-
tions.

2. Floor Normalization: This step involves aligning the
motion data vertically by setting the lowest point to the
floor level. By doing so, all motions are standardized
to a common vertical starting point, ensuring that the
motions are grounded and realistic when rendered or
analyzed.

3. Rotation and Position Recovery: Cumulative sum-
mation of rotation and linear velocities is employed
to yield the global orientation and position, enabling
the translation of local joint movements into a cohe-
sive global pose.
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Table 1. Qualitative Results of Unconditional Text Generation Tasks on ROCStories and AG News Dataset

”ROCStories dataset”

Megan was excitedly putting the finishing touches on her intricate LEGO creation when suddenly,
it collapsed into pieces. Devastated, she burst into tears. Megan’s father rushed to her side, offering a warm embrace.

Todd and Lulu took their young daughter on a trip to South America. They all enjoyed swimming
in the Caribbean and tasting local food. By the end of their journey, they felt tired but happy.

Sophie eagerly planned her birthday party and wanted a specific cake design.
She visited several bakeries but found none that matched her vision. Finally, she discovered

the perfect cake design at a small bakery tucked away in a quiet corner.

”AG News dataset”

Last Wednesday, the German government announced it would authorize an Australian scientist to conduct cloning research to
advance medical research and innovation, bringing new hope to those seeking widespread tuberculosis vaccine coverage.

At the recent sports event, a previously unknown athlete captured the gold medal with a
remarkable performance, becoming the center of global attention.

A young artist showcased a captivating oil painting at a contemporary art exhibition, earning enthusiastic applause
from the audience and acclaim from the art community.

4. Foot Contact Detection: Determining when feet
make contact with the ground is essential for ensur-
ing the realism of the motion. This is achieved by us-
ing velocity thresholds to detect significant changes in
foot position between frames:

contact =
√

(∆Px)2 + (∆Py)2 + (∆Pz)2 < threshold,

(1)
where ∆P indicates the change in foot position, and
the threshold is defined based on the expected veloc-
ity of foot contacts. This mechanism allows for the
identification of key moments in the motion where feet
interact with the ground.

5. Motion Mirroring: This involves flipping the motion
data across the vertical axis, effectively creating a left-
right inversion of the original motion. This augmenta-
tion step doubles the dataset size and introduces vari-
ation that helps improve the robustness and generaliz-
ability of motion analysis and synthesis models.

Benefits for Motion Generation: The processing and
augmentation of motion datasets are pivotal for training mo-
tion tokenizers, facilitating the generation of realistic and
contextually coherent human motions. Enhancements in
data diversity and motion realism, along with the seamless
synthesis of textual and motion data, underscore the com-
prehensive approach to motion generation.

2. Experimental Results
2.1. Qualitative Results of Motion Generation

For the motion generation task, our approach delivers di-
verse, smooth, and realistic visualizations. Figure1 show

the visual results of our methods.

2.2. Qualitative Results of Editing Tasks

Our method supports mixed modal input as editing con-
dition, such as generation task with motion or text as guid-
ance direction. Figure2 show the variety of our methods in
editing tasks.

2.3. Qualitative Results of Unconditional Text Gen-
eration Tasks

We showcase our method’s unconditional generation
samples on both the ROCStories and AG News datasets in
Table 1, demonstrating coherent and diverse outputs, featur-
ing specialized nouns.

2.4. Quantitative Results on KIT Dataset

In addition to the HumanML3D and Human-X datasets,
we also validated our method on the KIT dataset. Table 2
summarizes the results, which indicate that our method
achieves superior results in R-Precision, FID, and MM-
Dist, and also shows commendable diversity. The outcomes
tabulated in Table 2 demonstrate our method’s exceptional
performance, particularly in terms of R-Precision, FID, and
MModality metrics, alongside its commendable diversity.

3. Ablation Studies

In this section, we assess the impact of various elements
within our framework under controlled conditions.

2
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Figure 1. Results of motion generation task.

Table 2. Quantitative results of text-to-motion task on the KIT test set

Method R-Precision↑ FID↓ MM-Dist↓ Diversity→ MModality↑Top1 Top2 Top3

Real 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -
MDM 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 10.85±.109 1.907±.214

T2M 0.370±.005 0.569±.007 0.693±.007 2.770±.109 3.401±.008 10.91±.119 1.482±.065

MotionDiffuse 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

MLD 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 10.800±.117 2.192±.071

Ours 0.422±.003 0.630±.005 0.750±.006 0.392±.023 3.087±.012 11.127±.083 2.300±.055

3.1. Contrastive Text-Motion Variational Autoen-
coder

3.1.1 Variational Design

To investigate the role of Variational Autoencoder (VAE),
we conducted experiments using a Deterministic Autoen-
coder as a comparative baseline. In the Deterministic en-
coder setup, the input no longer consists of two learnable
tokens representing distributions, but rather a single token
representing an embedding. The encoder’s output does not
require sampling; instead, it directly represents the latent
space vector. During loss computation, all KL losses are
removed, retaining only the cosine loss. The experimental
results are documented in the Table 3. To investigate the
effect of the sampling size in the VAE, we compared ex-
periments using a single random sample versus ten samples
from the latent space. The results are documented in the
Table 3.

3.1.2 Loss Design

In this module, we investigate the impact of the loss used to
train the CTMV on motion generation, with results recorded
in the Table 4. When removing the motion encoder and
using only a Gaussian prior KL loss, there is a significant
drop in R-precision, decreasing to 0.482; removing the co-
sine loss results in a decrease in R-precision to 0.486; re-
moving the Gaussian prior KL loss leads to a decrease in
R-precision to 0.490; removing the cross-modal KL loss re-
sults in a smaller decrease in R-precision to 0.494. It can be
observed that removing any component of the training loss
diminishes the performance of motion generation, indicat-
ing the effectiveness of each component.

3.2. Diffusion Model

In this subsection, we delineate the methodical ablation
study performed on the diffusion model within our UniT-
MGE framework. Our analysis is systematically segmented

3
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Figure 2. Results of editing tasks. UniTMGE edits the base motion by adding multimodal conditions, including text and motion, to the
latent space.

Table 3. Evaluation of variational or deterministic autoencoder on motion generation

Pattern Sampling R-Precision↑ FID↓ MM-Dist↓ Diversity→ MModality↑Top1 Top2 Top3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
Deterministic no 0.47±.005 0.664±.005 0.764±.004 0.386±.012 3.489±.011 9.417±.049 2.367±.079

Variational 1 random sample 0.499±.003 0.683±.003 0.780±.002 0.339±.009 3.087±.008 9.527±.053 2.500±.083

Variational 10 random average 0.489±.001 0.675±.002 0.774±.002 0.341±.004 3.067±.005 9.535±.023 2.495±.053

4



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

WACV
#2310

WACV
#2310

WACV 2025 Submission #2310. Algorithms Track. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 4. Evaluation of the loss fuction on motion generation

LKL Lcos
R-Precision↑ FID↓ MM-Dist↓ Diversity→ MModality↑Top1 Top2 Top3

Real 0.511±.003 0.703±.003 0.797±.002 0.002±.000 2.974±.008 9.503±.065 -
KL(ϕt, ψ) × 0.482±.004 0.674±.005 0.770±.004 0.406±.012 3.189±.009 9.667±.038 2.417±.084

KL(ϕt, ϕm) +KL(ϕt, ψ) +KL(ϕm, ψ) × 0.486±.003 0.677±.003 0.775±.003 0.366±.009 3.123±.008 9.587±.053 2.450±.063

KL(ϕt, ϕm)
√

0.490±.003 0.679±.002 0.778±.003 0.358±.006 3.105±.008 9.554±.048 2.478±.084

KL(ϕt, ψ) +KL(ϕm, ψ)
√

0.494±.003 0.680±.002 0.779±.003 0.342±.006 3.095±.008 9.534±.048 2.494±.069

KL(ϕt, ϕm) +KL(ϕt, ψ) +KL(ϕm, ψ)
√

0.499±.003 0.683±.003 0.780±.002 0.339±.009 3.087±.008 9.527±.053 2.500±.083

Table 5. Ablation study on the Diffusion Model component of UniTMGE

Models R Precision Top 1↑ FID↓ MM Dist.↓ Diversity→ MModality↑
Real Data 0.511±.003 0.002±.000 2.974±.008 9.503±.065 -
UniTMGE-1 (z, R1x512) 0.499±.003 0.339±.009 3.087±.008 9.527±.053 2.500±.083

UniTMGE-5 (z, R5x512) 0.485±.003 0.884±.019 3.311±.008 8.224±.081 2.498±.070

UniTMGE-7 (z, R7x512) 0.489±.002 0.901±.019 3.415±.008 8.336±.064 2.483±.079

UniTMGE-10 (z, R10x512) 0.479±.005 0.786±.027 3.416±.012 8.506±.067 2.578±.077

UniTMGE-1 (z, R1x256) 0.483±.004 0.453±.031 3.160±.012 8.598±.088 2.768±.096

UniTMGE-1 (z, R1x512) 0.499±.003 0.339±.009 3.087±.008 9.627±.056 2.440±.074

UniTMGE-1 (ϵθ, cross-att) 0.470±.004 0.922±.041 3.980±.015 8.598±.088 2.768±.096

UniTMGE-1 (ϵθ, concat) 0.499±.003 0.339±.009 3.087±.008 9.527±.053 2.500±.083

UniTMGE-1 (ϵθ, w/o skip) 0.488±.003 0.684±.015 3.343±.010 9.568±.093 2.597±.098

UniTMGE-1 (ϵθ, w/ skip) 0.499±.003 0.339±.009 3.087±.008 9.527±.053 2.500±.083

UniTMGE-1 (ϵθ, 4 layers) 0.489±.005 0.324±.010 3.159±.009 9.706±.072 2.535±.083

UniTMGE-1 (ϵθ, 6 layers) 0.497±.003 0.329±.012 3.119±.012 9.624±.062 2.504±.088

UniTMGE-1 (ϵθ, 8 layers) 0.496±.002 0.353±.013 3.096±.010 9.724±.082 2.483±.069

UniTMGE-1 (ϵθ, 10 layers) 0.499±.003 0.339±.009 3.087±.008 9.527±.053 2.500±.083

Table 6. Comparative Evaluation of Motion Synthesis under
Masked Conditions

Method FID↓ KID↓ Multimodality↑
ACTOR 48.80 0.53 14.10
MoDi 13.03 0.12 17.57
MDM 31.92 0.36 17.00
UniTMGE-1 (ϵθ, w/o skip) 24.40 0.20 17.30
UniTMGE-1 (ϵθ, w/ skip) 22.50 0.19 17.85
UniTMGE-1 (Motion Encoder) 28.10 0.27 16.90

to evaluate the influence of various model components on
text-to-motion generation quality. We meticulously dis-
sect the impact of the latent space configuration, denoted
by UniTMGE-i, where i indexes the dimensionality of the
latent vector z in Ri×256. The choice of latent vector di-
mension is critical, as it represents the model’s capability to
encapsulate motion nuances; a smaller dimensionality may
provide computational benefits at the potential cost of ex-
pressive power.

We proceed to assess the role of the diffusion compo-
nent ϵθ, particularly focusing on two methods of condition
embedding—cross-attention (cross-att) and concatenation
(concat). These methods are pivotal in integrating textual
information and are expected to exhibit a substantial impact

on the coherence of generated motion sequences with the
textual descriptions.

Furthermore, our study incorporates an exploration of
the skip connection mechanism, inspired by its success in
image processing tasks, hypothesizing its utility in preserv-
ing high-fidelity information throughout the diffusion pro-
cess. We also experiment with varying the number of trans-
former layers within ϵθ to calibrate the model’s depth for
effective learning.

The detailed results of these ablation experiments are
summarized in the Table 5, Notably, UniTMGE-1, which
employs the smallest latent representation, surprisingly out-
performs its counterparts in several metrics, hinting at the
potential efficiency of a more compact latent space.

As per the architecture involving ϵθ, both cross-attention
and concatenation are explored for their effectiveness in
conditioning the diffusion process. Preliminary results sug-
gest that, akin to the MDM findings, concatenation yields
a more beneficial encoder design. Meanwhile, the inclu-
sion of skip connections furnishes a significant performance
uplift, corroborating their utility beyond image domains.
However, varying the number of transformer layers does
not demonstrate a marked difference in performance, sug-
gesting that a plateau may have been reached in terms of
learning capacity for this particular dataset.
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Finally, we contrast the performance of diffusion-based
generation with the latent sampling-based generation from
the variational component (V). This distinction is crucial
for understanding the unique contributions of each approach
within our proposed framework.

3.3. Multimodal Conditional Representation and
Editing

The efficacy of MCRE is pivotal for the M2M tasks in
our UniTMGE framework. MCRE is the cornerstone that
allows for seamless motion synthesis by solely leveraging
motion inputs when textual descriptors are unavailable or
unnecessary. To distill the contribution of MCRE to the
UniTMGE framework, we conduct an ablation study on the
HumanML3D test set under a purely motion-driven context.

This ablation investigates three key variants: our model
UniTMGE-1 with a latent vector size of R1×512, other es-
tablished M2M capable models, and a configuration that
utilizes a motion encoder in isolation. For the motion en-
coding process, we experiment with a transformer-based
motion encoder as an alternative to the standard MCRE
module. This encoder mirrors the structure of the motion
adapter within the MCRE, featuring an eight-layer trans-
former network with a comparable latent vector size of
R1×512. However, it diverges in training methodology; we
integrate its training with the diffusion process rather than
treating it as a separate component with CLIP text encoder.
The training proceeds in two distinct stages: initially, the
VAE is trained to establish a robust motion representation.
Subsequently, we transition to the joint training of the dif-
fusion process alongside the motion encoder. This training
strategy aligns with the protocols established in our original
Stage 3.

In our experimental setup, we aim to assess the ability
of various models to generate motion sequences when con-
ditioned on real data with an applied Mask. This simulates
a scenario where partial information about the desired mo-
tion is known, and the model is expected to complete or re-
fine the motion sequence. We test the models’ performance
using a comprehensive set of metrics to quantify the qual-
ity and diversity of the generated motions. Specifically, we
employ FID and KID to evaluate the visual authenticity of
the motions against the ground truth, gauging the similar-
ity to the original motion data. Diversity and Multimodality
are assessed to ensure that the models are not just reproduc-
ing variations of a single motion pattern but are capable of
generating a wide array of plausible motions.

The following Table 6 presents the outcomes of this ab-
lation, offering a comparative analysis of the model’s ability
to generate diverse and authentic motion sequences with-
out textual input. Lower FID and KID scores suggest bet-
ter quality, whereas higher Multimodality scores indicate a
greater variety in the synthesized motions, both of which

are desirable attributes for robust M2M synthesis.
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