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Abstract

In this supplementary material, we provide experi-
ment results on the BRIAR datasets and a comprehensive
overview of the configuration parameters, implementation
details, network details of our proposed VM-Gait. Addition-
ally, we analyze the influence of temporal stride and visu-
alize examples of silhouettes, 3D mesh, and virtual markers
with occlusion and noise from the Gait3D dataset, thereby
enhancing the contextual understanding of our model’s per-
formance. Lastly, we discuss potential future works that
include developing silhouette encoder model, multi-modal
fusion model and a large-scale multi-modal gait dataset.

1. Experiment Results on the BRIAR Datasets
To demonstrate the robustness of VM-Gait in real-

world scenarios involving long-range and high-altitude con-
ditions, we conducted additional experiments using the
BRIAR dataset. The results are shown in Table 1, VM-
Gait significantly outperforms other methods. The system’s
ability to provide valuable complementary information is
particularly evident when silhouette masks become less ac-
curate at greater distances, underscoring VM-Gait’s effec-
tiveness in real-world environments.

Dataset: BRAIR [1] Metrics (%)
Methods R-1 R-5 R-20

SMPLGait w/o 3D 32.4 65.1 90.1
GaitPart 33.8 63.6 85.5
GaitSet 34.9 68.8 88.4

GaitBase 36.9 68.2 90.3
DeepGaitV2 50.6 77.8 98.3

VM-Gait 52.0 78.1 98.6

Table 1. Gait Recognition Results on the BRAIR [1] dataset. We
conduct experiments with input size: (64 × 44). The VM-Gait
method stands out among state-of-the-art methods. VM-Gait is
able to provide valuable complementary information when silhou-
ette masks become less accurate at greater distances,

2. Analysis of Fusion Methods

To investigate the impact of different fusion methods,
we performed an ablation study comparing three commonly
used fusion techniques for feature integration. The results,
presented in Table 2, reveal that concatenating silhouette
features with virtual marker features is both a straightfor-
ward and effective approach.

Fusion R-1 R-5 mAP mINP
Concatenate 75.4 87.5 66.4 39.5

Add 74.4 86.9 65.5 39.1
Attention 70.5 84.5 61.1 35.0

Table 2. The ablation study for the fusion on the Gait3D dataset.

3. Implement Details of the VM-Gait Frame-
work

In this section, we present the implementation details of
the VM-Gait framework applied to the Gait3D, OUMVLP-
Mesh and BRIAR datasets. The configuration parameters
for Gait3D are presented in Table 5, whereas the configu-
ration parameters for OUMVLP-Mesh are detailed in Ta-
ble 6. The configuration parameters for BRIAR dataset are
detailed in Table 7. It’s worth noting that our framework
implementation is built upon the OpenGait [2] codebase to
ensure flexibility and adaptability.

4. Additional Network Details of the VM-Gait
Framework

In this section, we present additional details and hy-
perparameters utilized within the VM-Gait Framework.
Specifically, we elaborate on the hyperparameter details of
the PST-Transformer for virtual markers in the 3D branch
in Table 4. We also provide the hyperparameters of the
PST-Transformer for mesh vertices inputs in the 3D branch.
The results of these comparisons are discussed in the main
paper’s ablation study section.



Figure 1. Example of a partial silhouette sequence, exhibiting occlusion and noise, along with the corresponding 3D mesh and virtual
markers.

Temporal Stride R-1 R-5 mAP mINP
3 75.4 87.5 66.4 39.5
4 74.0 87.0 65.9 39.3
5 75.2 86.6 65.7 38.7

Table 3. The ablation study evaluates the influence of temporal
stride on the Gait3D dataset.

5. Visualization of the Gait Recognition

We present gait representation examples with occlusion
and noise extracted from Gait3D. These examples showcase
the silhouettes along with their corresponding 3D mesh ver-
tices and virtual markers, as depicted in Figure 1. Notably,
when image sequences suffer from occlusion and noise, the
segmented silhouettes tend to possess incomplete informa-
tion, potentially impacting the performance of gait recogni-
tion. Despite the inherent challenges in the ill-posed prob-
lem of 3D representation reconstruction from videos, 3D
representation reconstruction algorithms consider spatial-
temporal features, enabling the generated 3D mesh and vir-
tual markers to offer plausible shapes from videos. These
plausible shapes, in turn, may furnish complementary in-
formation to enhance the performance of gait recognition.

6. Analysis of the influence of temporal stride

The temporal stride refers to the interval at which the
transformer processes temporal information. This parame-
ter determines how many time frames are considered at each
step of the PST transformer operation. The findings are pre-
sented in Table 3. A larger temporal stride results in more
loss of temporal information. Balancing the temporal stride
with available GPU memory is crucial.

Hyper-parameters VM Meshes skeletons
spatial radius 0.05 0.05 0.05
n samples 4 430 1
spatial stride 4 430 1
temporal kernel size 3 3 3
temporal stride 3 3 3
dim 8 8 8
dim head 8 8 8

Table 4. Hyper-parameters of PST-Transformer for virtual mark-
ers, mesh vertices and skeletons inputs in the 3D branch.

7. FutureWork and Discussion
While we introduced a multi-modal framework featuring

novel gait representations, there are still aspects that can be
improved. In this section, we highlight some subsequent
works that are worth further exploration including devel-
oping silhouette encoder model, multi-modal fusion model
and a large-scale multi-modal gait dataset.

7.1. Developing Silhouette Encoder Model

Developing the silhouette encoder model can substan-
tially improve silhouette and multi-modal gait recognition
performance. Currently, state-of-the-art silhouette-based
approaches employ the CNN architecture. Investigating the
use of transformer architecture has the potential to further
improve recognition performance. The self-attention mech-
anism in transformers allows the model to focus on different
parts of the input sequence, enabling it to discern subtle pat-
terns and variations in the gait cycle.

7.2. Developing Multi-Modal Fusion Model

When different features are extracted from different gait
representations, there is a compelling need for research into
the development of effective fusion techniques to fuse these



features. This integration can be accomplished through a
range of methods, including concatenation, weighted av-
eraging, or more advanced approaches based on attention
mechanisms.

7.3. Developing Large-Scale Multi-Modal Gait
Datasets

The development of comprehensive large-scale multi-
modal gait datasets holds the potential to significantly ad-
vance the development of multi-modal gait recognition sys-
tems. These datasets offer a wealth of diverse information
from various modalities, fostering improvements in the ac-
curacy, robustness, and overall effectiveness of multi-modal
gait recognition technology. Moreover, the development of
long-distance gait datasets holds significant value. Devel-
oping datasets that focus on gait recognition from extended
distances contributes to a more realistic and practical un-
derstanding of gait analysis, enhancing the applicability of
such systems in real-world scenarios.

References
[1] David Cornett, Joel Brogan, Nell Barber, Deniz Aykac, Seth

Baird, Nicholas Burchfield, Carl Dukes, Andrew Duncan,
Regina Ferrell, Jim Goddard, et al. Expanding accurate per-
son recognition to new altitudes and ranges: The briar dataset.
In Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 593–602, 2023. 1, 4

[2] Chao Fan, Junhao Liang, Chuanfu Shen, Saihui Hou,
Yongzhen Huang, and Shiqi Yu. Opengait: Revisiting gait
recognition towards better practicality. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9707–9716, 2023. 1

[3] Xiang Li, Yasushi Makihara, Chi Xu, and Yasushi Yagi.
Multi-view large population gait database with human meshes
and its performance evaluation. IEEE Transactions on Bio-
metrics, Behavior, and Identity Science, 4(2):234–248, 2022.
4

[4] Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Cheng-
gang Yan, and Tao Mei. Gait recognition in the wild with
dense 3d representations and a benchmark. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20228–20237, 2022. 3

data cfg dataset name: Gait3D [4]
evaluator cfg sampler:

frames all limit: 720
metric: euc
transform:

- type: BaseSilCuttingTransform
loss cfg - loss term weight: 1.0

margin: 0.2
type: TripletLoss
- loss term weight: 1.0
scale: 16
type: CrossEntropyLoss

model cfg model: VM-Gait
backbone cfg:

channels: - 64 - 128 - 256 - 512
layers: - 1 - 4 - 4 - 1

SeparateFCs:
in channels: 520
out channels: 256
parts num: 16

SeparateBNNecks:
class num: 3000
in channels: 256
parts num: 16

bin num:
- 16

optimizer cfg lr: 0.1
momentum: 0.9
solver: SGD
weight decay: 0.0005

scheduler cfg gamma: 0.1
trainer cfg log iter: 100

total iter: 80000
sampler:

batch size: - 32 - 4
frames num fixed: 30
sample type: fixed ordered

transform:
- type: Compose

trf cfg:
- type: RandomPerspective

prob: 0.2
- type: BaseSilCuttingTransform
- type: RandomHorizontalFlip

prob: 0.2
- type: RandomRotate

prob: 0.2

Table 5. Configuration parameters for the Gait3D [4] dataset



data cfg dataset name: OUMVLP-Mesh [3]
evaluator cfg sampler:

frames all limit: 720
metric: euc
transform:

- type: BaseSilCuttingTransform
loss cfg - loss term weight: 1.0

margin: 0.2
type: TripletLoss
- loss term weight: 1.0
scale: 16
type: CrossEntropyLoss

model cfg model: VM-Gait
backbone cfg:

channels: - 64 - 128 - 256 - 512
layers: - 1 - 1 - 1 - 1

SeparateFCs:
in channels: 520
out channels: 256
parts num: 16

SeparateBNNecks:
class num: 5153
in channels: 256
parts num: 16

bin num:
- 16

optimizer cfg lr: 0.1
momentum: 0.9
solver: SGD
weight decay: 0.0005

scheduler cfg gamma: 0.1
trainer cfg log iter: 100

total iter: 120000
sampler:

batch size: - 32 - 8
frames num fixed: 30
sample type: fixed ordered

transform:
- type: Compose

trf cfg:
- type: RandomPerspective

prob: 0.2
- type: BaseSilCuttingTransform
- type: RandomHorizontalFlip

prob: 0.2
- type: RandomRotate

prob: 0.2

Table 6. Configuration parameters for the OUMVLP-Mesh [3]
dataset

data cfg dataset name: BRIAR [1]
evaluator cfg sampler:

frames all limit: 720
metric: euc
transform:

- type: BaseSilCuttingTransform
loss cfg - loss term weight: 1.0

margin: 0.2
type: TripletLoss
- loss term weight: 1.0
scale: 16
type: CrossEntropyLoss

model cfg model: VM-Gait
backbone cfg:

channels: - 64 - 128 - 256 - 512
layers: - 1 - 4 - 4 - 1

SeparateFCs:
in channels: 520
out channels: 256
parts num: 16

SeparateBNNecks:
class num: 273
in channels: 256
parts num: 16

bin num:
- 16

optimizer cfg lr: 0.1
momentum: 0.9
solver: SGD
weight decay: 0.0005

scheduler cfg gamma: 0.1
trainer cfg log iter: 100

total iter: 100000
sampler:

batch size: - 32 - 4
frames num fixed: 30
sample type: fixed ordered

transform:
- type: Compose

trf cfg:
- type: BaseSilCuttingTransform

Table 7. Configuration parameters for the BRIAR [1] dataset
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