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A. Implementation Details

Network and training. The normalizing flow (NF) con-
sists of eight RealNVP [3] coupling layers, each parame-
terized by an MLP with three linear layers of 1024 hidden
dimensions and ReLU activations in between. The NF im-
plementation is based on the FrEIA package [1] and the
soft-clamping parameter is set to α = 2.0. Our model is
trained for 400K iterations using Adam [7] with weight de-
cay and learning rate set to 1e−4, and a batch size of 64.
Training takes around two days on a single A100 GPU. We
use an input image size of 224 × 224 and apply data aug-
mentation following [2] which includes random crops, scale
and different kinds of image blur, compression, and bright-
ness modifications. The loss weights are set to λβ = 5e−4,
λ2D = 1e−2, λNLL = 1e−1, λorth = 1e−1, λMMD = 5e−2,
λmask = 1e−1.

When using crop or scale data augmentation during
training, it would be intuitive to apply it to the 2D pose
condition as well by masking (i.e. setting to zero) the cor-
responding keypoints. However, we found it is beneficial
to always use the highest-likelihood 2D pose of the original
crop as condition. This leads to better generalization, since
the model learns to focus more on the 2D pose instead of
solely on the image feature.

Since annotations for BEDLAM [2] were initially only
released in SMPL-X [11] format, we follow BEDLAM-
CLIFF [2] and predict the first 22 body pose parameters of
SMPL-X. Hence, our normalizing flow models a distribu-
tion of 132 dimensions. We use 11 shape components in
the gender-neutral shape space. The SMPL-X labels for the
training set of 3DPW [16] are provided by [2]. All evalua-
tion is performed using the SMPL [10] body, by converting
predicted SMPL-X meshes to SMPL using a vertex map-
ping V ∈ R10475×6890 [11].

Competitors. Since ScoreHypo [17] does not evaluate on
EMDB [6], we use their released inference code to calculate
the distribution accuracy metrics on EMDB in Table 1 of the
main paper. They employ VirtualPose [14] to estimate the
root joint depth which is required to transform their pre-
dicted 2.5D pose representations to metric 3D space. How-
ever, we find that in rare cases VirtualPose fails to predict
reasonable depth for the target person or even fails to de-
tect the person at all, resulting in degenerated ScoreHypo
outputs. We use the predictions of neighboring frames to
fill in missing estimates. Due to the failure cases of Virtu-
alPose, other methods to recover metric scale such as the
bone-length optimization method from Pavlakos et al. [12]
might lead to slightly better results on EMDB. The distribu-
tion accuracy metrics for 3DPW [16] are provided by Score-
Hypo and we outperform them by a large margin.

To generate the qualitative results for ProHMR [8] in
Fig. 1 and Fig. 2 of the main paper, we use our retrained
baseline model ProHMR†. This baseline is trained on the
same three datasets using the same image backbone as our
proposed model, and is more accurate than the officially re-
leased checkpoint.

B. Additional Quantitative Results
Number of hypotheses. Fig. S1 shows the Per Vertex
Error (PVE) for an increasing amount of hypotheses on
3DPW. The PVE continues to improve significantly when
generating more than 100 hypotheses, reaching a PVE of
47.8mm for 1000 samples compared to 54.4mm for 100.

Number of heatmap samples. We utilize heatmaps of
the 2D pose detector ViTPose [18] to directly supervise the
learned distributions of our model using the sample-based
loss LMMD. The loss computes the Maximum Mean Dis-
crepancy between samples drawn from heatmaps and 2D
reprojections of random NF hypotheses. To analyze the in-
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Figure S1. Evaluation results on 3DPW for an increasing number
of generated 3D human mesh hypotheses.

EMDB (24)

Models MPJPE ↓ PA-MPJPE ↓ PVE ↓
ProHMR† [8] 76.7 47.1 87.3
+ bbox info [9] 73.1 46.5 82.3
+ 2D pose condition 69.0 44.0 77.9
+ RealNVP 68.5 43.1 77.5
+ LMMD 63.9 40.7 72.4
+ Lmask (Ours full) 63.6 40.9 72.0

Table S1. Ablation study analyzing our proposed design choices
and loss functions. Components are added successively, and the
minimum errors out of 100 hypotheses are reported.

fluence of the number of samples used for LMMD, we show
the performance for different configurations in Fig. S2. The
performance first improves with an increasing number of
samples, and then remains stable over a wide range. When
using only very few samples for computing LMMD, the
model cannot successfully learn to reproduce the distribu-
tions encoded in the heatmaps and often predicts distribu-
tions with very low diversity. Intuitively, a sufficient num-
ber of samples is required to represent the heatmap distri-
butions, while the computational complexity grows with in-
creasing number of samples. As a good trade-off, we use
25 samples in all other experiments.

Ablation study on EMDB. We conduct the ablation
study of the main paper on EMDB and present the results in
Table S1. Our proposed design choices and loss functions
all contribute to the accuracy of the predicted distributions.
Notably, despite being added last in the ablation study, the
use of LMMD results in large improvements.

Detailed LMMD ablation study. A main contribution of
this work is to directly supervise the learned distributions
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Figure S2. Evaluation results on EMDB for an increasing number
of joint samples drawn from the heatmaps for calculating LMMD.
The minimum Per Vertex Error (PVE) of 100 hypotheses is evalu-
ated. Each square denotes a model trained with the specified num-
ber of heatmap samples.

by minimizing the distance to distributions encoded in
heatmaps of a 2D pose detector [18] using the sample-based
distance measure LMMD. To further analyze the influence
of LMMD, we perform additional experiments on 3DPW
and EMDB. The goal is to evaluate different ways of su-
pervising random hypotheses generated by the normaliz-
ing flow during training. The mask loss Lmask is not ap-
plied in this study. As a baseline, we first train a model
without LMMD and where the 2D reprojection loss L2D is
only computed for the approximated mode prediction. Ran-
dom NF hypotheses are thus not supervised for this model.
Based on this baseline, we train models where either all
joints (L2D-all) or only visible joints (L2D-vis) of random hy-
potheses are penalized by minimizing the distance to the
ground-truth 2D joints using an l1 loss. This is done by
ProHMR [8] and HuManiFlow [13], respectively. Further-
more, we train a model that receives the embedding pro-
posed in DiffPose [5] as additional condition, which is com-
puted based on samples drawn from the heatmaps. 2D re-
projections of random hypotheses are not penalized during
training of this model. The distribution accuracy metrics
for 100 hypotheses per image are presented in Table S2.
Supervising all 2D joints of random hypotheses by mini-
mizing the distance to the ground-truth position has overall
no positive impact on the distribution accuracy. On the con-
trary, it heavily restricts the learned distributions, leading to
low sample diversity. When only supervising visible joints
using a loss weight of λ = 5e−3, the metrics slightly im-
prove. While it is intuitive to enforce all visible joints to
be at the 2D location of the ground-truth, we find that this
also leads to significantly less diversity generated for invis-
ible joints, which has negative influence on the distribution



Supervising 3DPW (14) EMDB (24)

random hypotheses MPJPE ↓ PA-MPJPE ↓ PVE ↓ MPJPE ↓ PA-MPJPE ↓ PVE ↓
no supervision 48.9 32.1 57.4 67.8 43.2 76.8
L2D-all, λ = 1e−3 48.1 31.8 56.9 68.5 43.1 77.5
L2D-all, λ = 5e−3 51.3 33.3 60.5 71.6 45.4 81.0
L2D-all, λ = 1e−2 53.2 34.2 62.9 71.3 46.2 80.8
L2D-vis, λ = 1e−3 48.4 31.9 57.3 68.7 43.0 77.4
L2D-vis, λ = 5e−3 47.6 31.4 56.3 67.9 42.3 76.6
L2D-vis, λ = 1e−2 50.6 32.7 59.5 71.3 45.4 80.8
DiffPose condition [5] 48.1 32.1 57.0 68.7 42.9 77.4
LMMD (Ours) 46.5 29.7 54.8 63.9 40.7 72.4

Table S2. Evaluation results for the ablation study on how to best supervise random hypotheses during training. The minimum errors out
of 100 hypotheses are reported. Random samples are either not supervised, supervised by minimizing an l1 loss to the ground-truth 2D
positions for either all (L2D-all) or only visible (L2D-vis) 2D joints, or by using our proposed LMMD loss.

accuracy. Moreover, performance of the models heavily de-
pends on the 2D loss weight. Using DiffPose embeddings
as additional condition does not lead to improvements in
our setting. Note that in contrast to our setting, the orig-
inal DiffPose model does not use image features as con-
dition and thus has more incentives to process and exploit
the information encoded in the embeddings. Finally, joint-
wise minimizing the Maximum Mean Discrepancy between
2D reprojections of random hypotheses and samples drawn
from heatmaps consistently leads to learned distributions
with the highest accuracy. With LMMD, the learned distri-
butions are explicitly optimized to have high diversity for
ambiguous and low diversity for unambiguous joints.

C. Additional Qualitative Results
In the following, we will present additional qualitative

results. Predicted camera parameters are used for rendering
the 3D human mesh hypotheses and a side-view of each
human mesh is created by a rotation of 90◦ or 270◦ around
the y-axis in camera space.

Failure cases. A few examples of undesirable behavior of
our model are depicted in Fig. S3. While optimizing Lmask
significantly decreases the number of incorrect hypotheses,
the model still sometimes generates hypotheses where joints
are visible that should be invisible. This typically happens
for highly ambiguous joints for which the model predicts
distributions with very high diversity. We find that using a
larger loss weight λmask for the mask loss can further de-
crease the number of incorrect hypotheses. However, this
comes at a cost of reducing the diversity of the learned dis-
tributions too much, resulting in worse accuracy metrics.
Finding a way to further reduce the number of incorrect hy-
potheses while maintaining meaningful diversity could be
promising future work. Another typical failure case occurs
when the model is presented with highly unusual poses not

seen during training. For such examples, high diversity is
generated even for unambiguous joints. However, in con-
trast to deterministic regressors, our model provides infor-
mation about the prediction uncertainty, either by comput-
ing the variance of the hypotheses or by directly calculating
their likelihoods. This is useful for downstream tasks that
need to know whether the reconstructions results are accu-
rate or not.

Depth ambiguity. Even if all body parts of the person
are clearly visible in the image, the depth often cannot be
uniquely reconstructed. We show two of such examples in
Fig. S4. The predicted hypotheses vary only slightly along
the image directions, but have high variance for the depth.

Uncertainty in heatmaps of ViTPose [18]. We visual-
ize heatmap predictions of ViTPose for occluded joints to-
gether with 3D mesh hypotheses generated by our model in
Fig. S5. The predicted heatmaps encode meaningful joint
uncertainty information that our model successfully utilizes
during training.

Comparison with competitors. We qualitatively com-
pare the performance of our model with ProHMR† and Hu-
ManiFlow by visualizing the reprojections of 100 hypothe-
ses for highly ambiguous joints in Fig. S6. Our model gen-
erates more plausible and more meaningfully diverse 3D
human mesh hypotheses than the competitors.

D. Limitations and Future Work
Following previous work [13], we define a joint to be

invisible if the corresponding heatmap predicted by a 2D
pose detector has a maximum value below a certain thresh-
old. While this works well for most cases, we observe that
the 2D detector sometimes tends to be overconfident. This
calibration gap in 2D human pose estimation frameworks



was also recently observed and analyzed by Gu et al. [4].
Future work could examine using explicitly predicted joint
visibility scores [4,15] instead of maximum heatmap values
to decide if a joint is invisible for training and evaluation.

Since we use the distributions encoded in the heatmaps
of a 2D pose detector as supervision signal, the performance
of our model is influenced by the accuracy of these encoded
distributions. Thus, another interesting future research di-
rection would be to improve the distribution modeling ca-
pabilities of 2D pose estimators.



Figure S3. Typical failure cases of our approach. For highly ambiguous joints, our model predicts distributions with very high diversity,
sometimes containing a few incorrect samples highlighted with a red circle (rows 1 and 2). The model fails to predict meaningful distribu-
tions for very unusual poses not seen during training (row 3).

Figure S4. Examples demonstrating depth ambiguity for monocular 3D human mesh estimation. Although all hypotheses vary only slightly
along the image directions, significant diversity for the depth is generated. Reprojections of 100 hypotheses for the right wrist, left wrist,
right ankle, and left ankle are shown.



Figure S5. Predicted heatmaps of ViTPose [18] are shown together with 3D human mesh hypotheses generated by our model.

Figure S6. Qualitative comparison with the competing methods ProHMR [8] and HuManiFlow [13]. The 2D reprojections of 100 hypothe-
ses for highly ambiguous joints are shown.
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