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1. Ablations

In this section, we will analyze certain components and
parameters of the proposed method.
Radius Search Threshold. In the main paper, similar
patches are selected by running radius search in the em-
bedding space. We compute the median similarity as the
radius search threshold over 100 random samples from the
query and database images. Here, to understand how sensi-
tive VOP is to the setting of this threshold, we show tuning
results on the validation set of MegaDepth with different
thresholds (horizontal axis) in Fig. 1. AUC scores and me-
dian errors are shown on the top-10 retrieved image pairs.
Dropout Layer. Table 1 shows the relative pose estimation
performance on the top-k images retrieved by the model
with or w/o global prefilter ([CLS] tokens), and dropout
layer. Testing sets of MegaDepth are used, as in the main
paper. The [CLS] prefiltering improves the AUC scores.
However, it increases the median pose errors marginally at
the same time. As shown in the fifth row, data augmenta-
tion is essential in robustly learning the embeddings. Also,
the last two rows in Table 1 show that the dropout layer im-
proves the performance on MegaDepth. As shown in the
main paper, VOP generalizes well for pose estimation on
other data and indoor localization.
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Figure 1. Ablations on the threshold used in radius search.
AUC@10◦ and median pose errors on the validation scene shown.

Prefilter Augment Dropout AUC@10◦ ↑ Med. pose error (◦) ↓ inliers ↑
✓ × × 65.1 2.19 272.5
× ✓ × 66.3 2.18 222.0
✓ ✓ × 66.7 2.18 263.0
✓ ✓ ✓ 67.6 2.02 246.5

Table 1. Relative pose estimation on the MegaDepth dataset [29]
on the top 5 retrieved images using different configurations, with
the best results in bold. Prefilter indicates if the [CLS] token was
employed to shortlist the potential candidates before overlap pre-
diction. Augment refers to whether data augmentation was used.

2. Qualitative Results
Most VPR methods prioritize retrieving similar images,

typically resulting in short baselines that are not suitable
for reconstruction. These goals conflict: the most similar
images often produce short baselines, making pose estima-
tion unstable. We aim to move beyond traditional similarity
metrics and design retrieval methods tailored for geometric
challenges, such as selecting images suitable for pose esti-
mation. We visualize three query examples in Fig. 2 with
their top-1 retrieved images using different methods. VOP
results in low pose errors as we find images with reasonable
baselines for stable pose estimation.

3. Discussions
Training. To better understand the training process, Fig. 3
illustrates the training and validation losses on patch-level
contrastive loss and the average similarity changing among
different epochs on MegaDepth. It shows the contrastive
loss helps to learn the embeddings of negative patches
less similar and closer to positive ones, and it converges
fast. The similarities shown are averaged over all posi-
tive/negative patches of the validation set indicated by the
GT labels built from 3D reconstructions.
Supervision. As discussed in the main paper, we build the
supervision based on the ground-truth depth provided by
Megadepth for training. However, some datasets do not pro-
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Query-0
CosPlace* 

Base: 2.07 Pose err.: 1.21
AnyLoc 

Base: 0.27 Pose err.: 7.84
Salad 

Base: 0.23 Pose err.: 2.16
VOP 

Base: 0.68 Pose err.: 0.40

Query-1 Base: 0.67 Pose err.: 4.29 Base: 0.39 Pose err.: 14.87 Base: 0.39 Pose err.: 14.87 Base: 1.34 Pose err.: 2.96

Query-2 Base: 5.01 Pose err.: 0.67 Base: 3.70 Pose err.: 0.30 Base: 0.50 Pose err.: 3.37 Base: 6.44 Pose err.: 0.09

Figure 2. Baselines and pose errors between the retrieved images and queries using different methods shown.

Figure 3. Contrastive losses on the training set (left) and validation (middle) over different epochs shown for negative or positive patch
pairs. The right plot shows the average cosine similarities over different patch samples.

vide depth information. Thus, we provide another option
to build the supervision, i.e., patch-level positive and neg-
ative labels by matching the images using the SOTA dense
feature matching method, RoMA [3]. The patch pairs con-
taining more than 5 correspondences are set as positive, and
vice versa. As shown in Table 2, RoMA-based supervision
works comparable to the model trained with depth supervi-
sion. Thus, we recommend using RoMA dense correspon-
dences as a labeling option when fine-tuning on new data.

Supervision depth-based RoMA-based
Avg. accuracy (%) ↑ 74.8 74.1

Avg. med. error (◦) ↓ 1.6 1.7

Table 2. Average accuracy (%) and median pose error (◦) on the
retrieved top-5 images using different supervision on the test sets
as the main paper. InLoc is excluded from the median error.

Method Backbone train data pre-filter
NetVLAD [2] ResNet-18 [4] Pitts30k [5] -
CosPlace [6] ResNet-101 [4] SF-XL [6] -

CosPlace* [6] ResNet-101 MegaDepth -
DINOv2 [36] ViT-G14 [2] LVD-142M [36] -
AnyLoc [26] DINOv2 - -
SALAD [25] DINOv2 GSV-Cities [1] -

P-NetVLAD [20] NetVLAD Pitts30k& MSLS [6] NetVLAD
†P-NetVLAD [20] DINOv2-CLS

R2Former [62] ViT-S [2] MSLS [6] R2Former
†R2Former [62] DINOv2-CLS

VOP DINOv2 MegaDepth DINOv2-CLS

Table 3. Backbones, training data, and the perfilter methods used
for reranking shortlist generation are listed.

Fairness Comparison. As shown in Table 3, we show
the backbones, training data and prefiltering methods (for
reranking methods). We include fine-tuned results for Cos-
Place and results of the reranking methods tested with the
same prefilter as ours.



Method CosPlace* AnyLoc DINOv2 SALAD R2Former VOP
max ccsize 14.5 18.5 19.7 16.5 45.9 53.2

# cc 35.7 24.9 25.0 26.8 21.7 17.4
# skipped 17.1 21.6 19.1 23.1 4.2 13.9
# success 64.3 75.1 75.0 73.2 78.3 82.6
# failure 18.6 3.3 5.9 3.8 17.5 3.6
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Method CosPlace* AnyLoc DINOv2 SALAD R2Former VOP
max ccsize 98.2 97.0 98.4 97.8 100.0 100.0

idxlast 46.0 39.4 35.4 35.0 26.4 35.4
# skipped 84.1 88.9 88.7 88.9 86.4 88.4
# success 9.8 9.8 9.8 9.8 9.8 9.8
# failure 6.1 1.3 1.5 1.3 3.8 1.8
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Figure 4. The number of connected components (vertical axis, cc) is plotted against the index of the image pair (horizontal) on which
RANSAC-based relative pose estimation runs. The left plot shows results for the top-1 database (DB) images paired with 0.4K query
images, where the number of pairs equals the number of queries. The right plot shows results for the top-10 DB images with a termination
criterion applied when all images are in a single component. Row “max ccsize” is the number of elements in the largest cc. Row “# cc” is
the final number of connected components, while “idxlast” shows the index when the termination criterion was triggered in the right plot.
Row “# skipped”, “# success”, and “# failure” show the numbers of skipped, succeeded, and failed RANSACs. All are in percentages.

Pose Graph construction. Similar to Fig. 5 shown in the
main paper, here, we replace 1K random orders of queries
by their predicted similarity/overlap scores. As shown in
Fig. 4, VOP built a larger connected component on top-1 of
the queries than the competitors, also with the most num-
ber of successful RANSACs. On the right plot (top-10),
VOP iterates more queries than R2Former when ranked by
the scores. However, the run-time is comparable as VOP
skipped more times of RANSAC runs.

Image Patching. We investigated the number of patches
to be used to split the images. The experiments were con-
ducted on the testing scenes of MegaDepth, with all the im-
ages resized to 2242. From the trained VOP model with
a patch size of 142, we can extract 256 patch descriptors.
Then, average pooling is applied to aggregate the patch de-
scriptors to different patch sizes, such as 282, 562, 1122,
and 2242. For example, patch size = 2242 will lead to
a single patch of an image. The retrieval is done on the
same prefiltered image list, similarly as in the main paper.
As shown in Table 4, the aggregated patches e.g., patch
size=2242, perform worse than 142 on MegaDepth pose es-
timation and could not generalize well on Inloc localization.
This demonstrates that patch-level features can potentially
improve estimated pose and other geometric problems.

Storage & Query Speed. As we reduce the dimensionality
of the DINOv2 features from 1024 to 256, the embeddings
of all patches of each image need a total of 512 kB, while,
for AnyLoc, the storage per image is 384 kB. While we
require slightly more storage than AnyLoc [26], the differ-
ence is small. Compared to storing the local features in the
reranking-based methods, VOP costs less. In addition, we
compare the time of querying an image from the database
of different sizes using AnyLoc or VOP in seconds. Pre-
filtering top 20 images by DINOv2 [CLS] token and run-

Patch size AUC@10◦ ↑ med. pose err. ↓ recall@5◦, 0.5m ↑
MegaDepth DUC1 DUC2

2242 67.0 2.09 30.8 24.4
1122 67.0 2.09 38.4 38.9
562 66.5 2.17 48.5 57.3
282 65.9 2.29 59.1 72.5
142 67.6 2.03 72.2 77.1

Table 4. Ablations on different patch sizes used in inference time.
We show the AUC@10◦ scores and median pose errors of the top-
5 retrieved images on MegaDepth [29], and the recall@◦, 0.5m on
the top-40 of the localization data, Inloc [51] (DUC1, DUC2).

ning VOP for reranking to get top-1 out of 500 images cost
0.009 seconds, while 0.003 for AnyLoc. Querying top-1
from 5K images (prefiltered to 100), our method costs 0.03
seconds, while AnyLoc runs in 0.02s. Note that VOP needs
much more time for radius search without prefiltering. We
recommend using VOP as a reranking method in retrieval.
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