
Supplementary Materials for NeuManifold

Xinyue Wei1, Fanbo Xiang1, Sai Bi2, Anpei Chen3,4, Kalyan Sunkavalli2

Zexiang Xu2∗, Hao Su1∗

1University of California San Diego, 2Adobe Research, 3ETH Zürich, 4University of Tübingen

1. Prelimiaries
1.1. Watertight and Manifold Meshes

Watertight. If all edges are shared by exactly two faces,
then the mesh is watertight.

Manifold. A manifold mesh must meet the following prop-
erties: (1) all edges must connect at most two faces; (2) each
edge is incident to one or two faces and faces incident to a
vertex must form a closed or open fan; (3) the faces must
not self-intersect with each other.

1.2. Volumetric Neural Fields

Recent neural field representations utilize differentiable
volume rendering for their reconstruction and leads to high
visual quality. While our approach can generally support
any neural field models, we apply TensoRF and NeuS in
our paper. We now briefly cover the preliminaries of the
method.

The original NeRF uses pure MLPs, which make it slow
to train and incapable of modeling details accurately. Ten-
soRF [2] decodes the radiance field from a volume of fea-
tures, and this feature volume is further factorized into fac-
tors leveraging CANDECOMP/PARAFAC decomposition
or vector-matrix decomposition. In this work, we are inter-
ested in the vector-matrix decomposition, which factorizes
the 4D feature volume as the sum of three outer products
between a matrix and a vector.

1.3. Differentiable Rasterization

Differentiable rasterization refers to methods that opti-
mize inputs of rasterization-based rendering pipelines. In
this work, we are interested in nvdiffrast [4], which consists
of 4 stages, rasterization, interpolation, texture lookup, and
anti-aliasing. We mainly use the rasterization stage, which
maps triangles from 3D space onto pixel space, and the in-
terpolation stage, which provides 3D coordinates of pixels
to query the appearance network.

1Research partially done when X. Wei was an intern at Adobe Research
2* Equal advisory.

To ensure the mesh optimized by differentiable rasteri-
zation is a watertight manifold, we need to apply a meshing
algorithm that generates such meshes. In this work we pro-
pose DiffMC, which divides the 3D space into a deformable
grid and takes a scalar field (often SDF) defined on its ver-
tices as input. The algorithm turns the scalar field into an ex-
plicit mesh by a differentiable marching cubes algorithm.

2. Implementation Details
For the first stage, we directly build on off-the-shelf vol-

ume rendering models. Specifically, for TensoRF, we use
the official implementation. We compare two of our mod-
els for our main results: a high-quality one, labeled with
Ours, which uses the TensoRF (VM) with 48-dim input fea-
tures and 12-dim output features, plus a three-layer MLP
decoder; a fast one, labeled with Ours-F that uses the Ten-
soRF (VM) with 48-dim input features and output 27-dim
SH coefficients.

To adapt the density values for DiffMC, we transform
these values into opacity using the formula: α = 1 −
exp(−σ · δ), where σ represents density, α denotes opac-
ity, and δ is the ray step size used in volume rendering. We
employ a threshold t to control the surface’s position rela-
tive to opacity and use the value α− t for mesh extraction.

We train all the stage 2 and 3 models with batch size of
2 for 10k iterations. We use DiffMC with a grid resolution
of 256 for all results. Except when comparing with nvd-
iffrec, we use the default resolution of 128 as nvdiffrec’s
performance drops on higher resolutions, possibly due to
the decreased batch size and harder optimization.

3. Differentiable Marching Cubes (DiffMC)
In this section, we present additional results for DiffMC.

These include a 2D example showing why DMTet tends
to introduce more artifacts on density fields than DiffMC,
an ablation study that demonstrates how grid resolution in-
fluences visual fidelity and a comparison highlighting the
effectiveness of our method in mesh reconstruction when
compared to DMTet [8].

1



−2

−2

1

1

−2

−2

1

1

−0.5

𝑓(−2)

𝑓(−2)

𝑓(1)

𝑓(1)

𝑓(−0.5)

𝑓(−2)

𝑓(−2)

𝑓(1)

𝑓(1)

𝑡

DiffMC on SDF DMTet on SDF DMTet on density fieldDiffMC on density field

Figure 1. 2D example illustrating why DMTet tends to introduce
more artifacts when extracting meshes from density fields while
DiffMC can generate much smoother surfaces.

First, we illustrate how DMTet and DiffMC generate sur-
faces with a 2D schematic diagram in Fig. 1. In 2D, March-
ing Cubes is analogous to “Marching Squares” and March-
ing Tetrahedra is analogous to “Marching Triangles”. Given
a surface (shown as a green vertical line) passing through
the square/triangle grids (shown as black lines), suppose we
have recorded the perfect signed distance function (SDF)
values of the surface on the grid nodes, as shown in the two
leftmost figures, regardless of how the algorithm divides the
space, both methods exactly recover the ground truth sur-
face through linear interpolation.

However, in practice, perfect SDF values are not easily
obtainable, especially when the input comes from a volu-
metric density representation. Here, we simulate an imper-
fect SDF by applying a non-linear transformation f(s) =
exp(s) − 1 − t to the SDF values. Under this scenario,
DiffMC can still generate a flat surface (red line in the sec-
ond figure from the right), albeit with a slight offset t which
can be rectified by introducing an adjustable threshold to the
grid values. In contrast, DMTet produces zigzag lines (red
line in the rightmost figure) due to varying space divisions
and cannot be easily fixed.

As we transition from lower to higher resolutions, we
observe a consistent improvement in rendering quality, ulti-
mately converging as the resolution reaches 400, as demon-
strated in Tab. 1. Moreover, as depicted in Fig. 2, a higher-
resolution DiffMC is notably more adept at recovering in-
tricate structures, such as the ropes on the ship.

Next, we highlight the advantages of our method in ex-
tracting meshes from density fields by applying both our
approach and DMTet [8] to a set of pre-trained density net-
works, including TensoRF [2], instant-NGP [7] and vanilla
NeRF [6]. By comparing the visible surface agreemen
(VSA) of the reconstructed meshes, as illustrated in Fig. 3,
we observe a consistent enhancement brought about by
DiffMC across all methods. We also conduct a compari-
son between our DiffMC and DMTet in our pipeline, noting
a significant improvement in surface smoothness with our
method, which effectively mitigates most of the artifacts re-
sulting from the non-linearity of the density field.

4. Mip-NeRF 360 Dataset

We evaluate our method on unbounded real scenes in the
Mip-NeRF 360 dataset [1]. To deal with the unbounded
background, we follow the contraction function proposed in
[1] to warp the far objects from their original space, t-space,
into the contracted space s-space (a sphere with a radius
of 1.2 in our setup). When generating the mesh, we apply
DiffMC on the geometry network within t-space so that the
mesh can be watertight manifold, otherwise the contraction
may break the property. After getting the points on the mesh
surface, we contract the points back to s-space to compute
the color. Within the t-space, we utilize multiple resolutions
for the entire scene, with a higher resolution (340) for the
foreground and a lower resolution (56) for the background.
To represent the distant background that falls outside the
[-4, 4] box range, we employ a skybox. We use the anti-
aliasing of nvdiffrast [4] for this dataset.

Our method generates watertight manifold foreground
meshes. Therefore, we can apply simulation algorithms on
the foreground objects, as shown in Fig. 7, where we apply
soft-body simulation on the flower and use a solid ball to hit
it.

In Tab. 2, we compared our method with others. Some
mesh rendering methods, such as MobileNeRF [3] and
nerf2mesh [9], provided results for selected scenes, while
our method worked effectively on all unbounded scenes,
particularly excelling in indoor scenes.

5. LLFF dataset

We evaluate our method on forward-facing scenes on
LLFF dataset [5]. Following [2], we contract the whole
scene into NDC space to do the reconstruction and mesh
extraction. On this dataset, we use DiffMC with resolution
of 375. We use 9× sample per-pixel SSAA for this dataset.
Tab. 3 and Fig. 9 shows the quantitative and qualitative
results. Fig. 10 shows the reconstructed mesh of the scenes.

We put our method to the test with forward-facing scenes
from the LLFF dataset [5]. In line with [2], we con-
densed the entire scene into NDC space for reconstruction
and mesh extraction. For this dataset, we employed DiffMC
with a resolution of 375. You can find both the quantitative
results in Tab. 3 and the qualitative results in Fig. 9. Addi-
tionally, Fig. 10 showcases the reconstructed mesh for these
scenes.

6. NeRF-Synthetic Dataset

We show the complete quantitative comparison between
our method and the previous works on the NeRF-Synthetic
dataset in Tab. 4 and the complete visual comparison in
Fig. 12.



Table 1. The influence of DiffMC resolution to rendering quality. The visual fidelity consistently improves as the resolution increases,
eventually reaching a plateau when it reaches 400.

DiffMC reso 32 64 100 128 200 256 300 384 400
PSNR 23.12 26.83 28.64 29.46 30.8 31.19 31.34 31.53 31.54
SSIM 0.894 0.925 0.94 0.946 0.952 0.954 0.955 0.956 0.956
LPIPS 0.121 0.089 0.075 0.069 0.061 0.059 0.057 0.056 0.056

32 64 100 128 200 256 300 384 400

Figure 2. The influence of DiffMC resolution to rendeirng quality. We have noticed that lower resolutions can capture most of the coarse
structures but tend to lose finer details, such as the drum legs and the ropes on the ship. These finer details become more discernible as the
resolution increases.

Table 2. Quantitative results on each scene in the Mip-NeRF 360 dataset.

PSNR Bicycle Garden Stump Flowers Treehill Bonsai Counter Kitchen Room Mean
MobileNeRF 21.70 23.54 23.95 18.86 21.72 - - - - -
nerf2mesh 22.16 22.39 22.53 - - - - - - -
BakedSDF - - - - - - - - - 24.51
Ours (HQ-m) 20.16 23.36 22.27 18.49 21.07 26.64 24.83 24.97 26.75 23.17
Ours (HQ) 21.38 24.90 23.51 18.82 21.64 28.61 26.31 26.63 28.95 24.53
SSIM
MobileNeRF 0.426 0.599 0.556 0.321 0.450 - - - - -
nerf2mesh 0.470 0.500 0.508 - - - - - - -
BakedSDF - - - - - - - - - 0.697
Ours (HQ-m) 0.382 0.616 0.492 0.334 0.447 0.835 0.746 0.644 0.815 0.590
Ours (HQ) 0.469 0.746 0.589 0.366 0.494 0.888 0.808 0.764 0.872 0.666

LPIPS
MobileNeRF 0.513 0.358 0.430 0.526 0.522 - - - - -
nerf2mesh 0.510 0.434 0.490 - - - - - - -
BakedSDF - - - - - - - - - 0.309
Ours (HQ-m) 0.561 0.372 0.475 0.553 0.560 0.268 0.346 0.380 0.348 0.429
Ours (HQ) 0.488 0.252 0.413 0.520 0.506 0.201 0.270 0.275 0.274 0.355

7. Mesh Quality

We show the mesh quality comparison in Fig.13, where
except for Mobile-NeRF [3] and nerf2mesh [9], all the
meshes are watertight manifold. We show the VSA-
tolerance curves for the scenes in NeRF-Synthetic in
Fig. 11.

8. Network Architecture

In this section, we describe the network architecture used
in the experiments. Our proposed method has two versions,
a high-quality one and a fast one, and they share the same
geometry network architecture but with different appear-
ance networks. The geometry network is the same as Ten-
soRF [2] VM-192 in its paper. The appearance network is
from TensoRF and we show the two versions below respec-
tively.



Figure 3. DMTet vs DiffMC on extracting meshes from pre-trained density fields. Across all three methods, DiffMC consistently outper-
forms DMTet in terms of mesh quality.

O
ur

s w
/ D

M
Te

t
O

ur
s w

/ D
i�

M
C

Figure 4. A mesh surface comparison of Ours between using DiffMC and DMTet reveals that DiffMC can create significantly smoother
surfaces. This improvement is not limited to axis-aligned surfaces; it consistently outperforms DMTet on various rounded surfaces as well.

High-quality. We use the Vector-Matrix (VM) decompo-
sition in TensoRF, which factorizes a tensor into multiple
vectors and matrices along the axes as in Equation 3 of the
TensoRF paper. The feature Gc(x) generated by VM de-
composition is concatenated with the viewing direction d
and put into the MLP decoder S for the output color c:

c = S(Gc(x), d), (1)

We also apply frequency encodings (with Sin and Cos func-
tions) on both the features Gc(x) and the viewing direction
d. We use a 3003 dense grid to represent the scenes in
NeRF-Synthetic and use 2 frequencies for features and 6
frequencies for the viewing direction. The detailed network
architecture is shown in Tab. 5. As for Mip-NeRF 360 and
LLFF datasets we use a 5123 dense grid to represent the un-
bounded indoor scenes and do not use frequency encodings.

Fast. The fast version shares similar architecture and po-
sitional encoding setups with the high-quality version be-
fore the MLP decoder but uses the spherical harmonics (SH)
function as Gc instead, as shown in Tab. 5.

Quality Speed Trade-off We also show the model ren-
dering quality and speed after deployment in Tab. 6.

9. Visualization of ablation Study on Stage 1

We visualize the rendering results of models using dif-
ferent initialization strategies during stage 1, as shown
in Fig. 8. The comparison shows that employing high-
resolution DiffMC grids without proper geometry initial-
ization can lead the mesh optimization process to become
stuck in suboptimal geometric configurations.



O
ur

s
O

ur
s (

w
/ �

)
G

T
O

ur
s

O
ur

s (
w

/ �
)

G
T

Figure 5. Mip-NeRF 360 renderings.

Figure 6. Comparison between 8x MSAA and no AA. (a) Our de-
ployed high-quality model without AA (FPS: 146, PSNR: 31.26).
(c) the same model with 8× MSAA (FPS: 93, PSNR: 33.01). (b)
and (d) show the error maps of (a) and (c) respectively. The visual
quality at edges is significantly improved by MSAA with a rela-
tively small performance hit.

10. Ablation Study on Appearance Network

We validate the necessity of optimizing the meshes in
Tab. 7. To achieve this, we compare against baselines that
keep the meshes from Stage 1 fixed and only optimize the
appearance. We also provide the results using the GT mesh
in combination with the TensorF appearance network as a
reference, representing the upper limit of texture optimiza-
tion methods. As we can see from the results, TensoRF
appearance network achieves the best performance. All ap-
pearance networks were trained from scratch for fair com-
parison.



Table 3. Quantitative results on each scene in the LLFF dataset.

PSNR Fern Flower Fortress Horns Leaves Orchids Room Trex Mean
MobileNeRF 24.59 27.05 30.82 27.09 20.54 19.66 31.28 26.26 25.91
nerf2mesh 23.94 26.48 28.02 26.25 19.22 19.08 29.24 25.80 24.75
Ours (F-m) 23.72 27.05 30.88 27.01 19.68 18.43 30.33 25.03 25.27
Ours (F) 24.05 27.22 30.98 27.09 19.92 18.91 30.63 25.58 25.55
Ours (HQ-m) 24.19 26.99 31.18 27.35 20.49 19.68 30.79 26.61 25.91
Ours (HQ) 24.54 27.08 31.32 27.49 20.59 19.73 31.11 27.16 26.13
SSIM
MobileNeRF 0.808 0.839 0.891 0.864 0.711 0.647 0.943 0.900 0.825
nerf2mesh 0.751 0.879 0.765 0.819 0.644 0.602 0.914 0.868 0.780
Ours (F-m) 0.757 0.842 0.895 0.864 0.681 0.601 0.923 0.865 0.803
Ours (F) 0.772 0.848 0.898 0.866 0.693 0.622 0.926 0.872 0.812
Ours (HQ-m) 0.789 0.852 0.902 0.877 0.739 0.677 0.930 0.896 0.833
Ours (HQ) 0.801 0.856 0.902 0.881 0.745 0.681 0.933 0.904 0.838
LPIPS
MobileNeRF 0.202 0.163 0.115 0.169 0.245 0.277 0.143 0.147 0.183
nerf2mesh 0.303 0.204 0.270 0.260 0.321 0.314 0.246 0.215 0.267
Ours (F-m) 0.274 0.181 0.158 0.196 0.254 0.278 0.208 0.256 0.226
Ours (F) 0.258 0.175 0.152 0.191 0.244 0.260 0.203 0.247 0.216
Ours (HQ-m) 0.245 0.164 0.137 0.171 0.202 0.234 0.188 0.216 0.195
Ours (HQ) 0.228 0.160 0.136 0.165 0.198 0.226 0.181 0.205 0.187

Figure 7. Soft-body simulation on the foreground watertight man-
ifold mesh. The solid ball hits the flower and makes it deform. See
the attached video.

References
[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5470–5479, 2022. 2

[2] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao
Su. Tensorf: Tensorial radiance fields. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel, Oc-
tober 23–27, 2022, Proceedings, Part XXXII, pages 333–350.
Springer, 2022. 1, 2, 3

[3] Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and An-
drea Tagliasacchi. Mobilenerf: Exploiting the polygon raster-

ization pipeline for efficient neural field rendering on mobile
architectures. arXiv preprint arXiv:2208.00277, 2022. 2, 3

[4] Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol,
Jaakko Lehtinen, and Timo Aila. Modular primitives for high-
performance differentiable rendering. ACM Transactions on
Graphics, 39(6), 2020. 1, 2

[5] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view synthe-
sis with prescriptive sampling guidelines. ACM Transactions
on Graphics (TOG), 38(4):1–14, 2019. 2

[6] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. Communications of the ACM, 65(1):99–106, 2021. 2, 12

[7] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multireso-
lution hash encoding. arXiv preprint arXiv:2201.05989, 2022.
2, 12

[8] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and
Sanja Fidler. Deep marching tetrahedra: a hybrid representa-
tion for high-resolution 3d shape synthesis. Advances in Neu-
ral Information Processing Systems, 34:6087–6101, 2021. 1,
2

[9] Jiaxiang Tang, Hang Zhou, Xiaokang Chen, Tianshu Hu, Er-
rui Ding, Jingdong Wang, and Gang Zeng. Delicate tex-
tured mesh recovery from nerf via adaptive surface refine-
ment. arXiv preprint arXiv:2303.02091, 2023. 2, 3



w/o geo w/o tex w/o geo w/ tex w/ geo w/o tex w/ geo w/ tex

Figure 8. Visual comparison of Ours w/ or w/o geometry and texture initialization. when both initializations are omitted, the mesh
optimization process can easily become trapped in local minima, as illustrated in the first left image. Although texture initialization can
provide some assistance to the optimization process, it still falls short of achieving satisfactory geometric quality.

Table 4. Quantitative results on each scene in the NeRF-Synthetic dataset.

PSNR Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean
MobileNeRF 34.09 25.02 30.20 35.46 34.18 26.72 32.48 29.06 30.90
nvdiffrec 31.00 24.39 29.86 33.27 29.61 26.64 30.37 26.05 28.90
TensoRF (DT) 27.72 22.20 25.66 28.85 25.86 22.12 26.13 23.67 25.28
NeuS (DT) 31.80 22.52 23.44 33.86 28.07 26.68 31.42 25.02 27.85
nerf2mesh 31.93 24.80 29.81 34.11 32.07 25.45 31.25 28.69 29.76
nvdiffrec (m) 31.24 23.17 25.11 32.67 28.44 26.33 29.39 24.82 27.65
Ours (F) 33.82 25.25 31.28 35.43 34.40 26.83 32.37 28.13 30.94
Ours (HQ) 34.46 25.42 31.83 36.45 35.40 27.38 33.46 28.77 31.65
Ours (F-m) 33.68 24.98 30.23 35.10 33.39 26.61 32.21 27.54 30.47
Ours (HQ-m) 34.37 25.17 30.64 36.35 34.28 27.22 33.35 28.12 31.19
SSIM
MobileNeRF 0.978 0.927 0.965 0.973 0.975 0.913 0.979 0.867 0.947
nvdiffrec 0.965 0.921 0.969 0.973 0.952 0.924 0.975 0.827 0.938
TensoRF (DT) 0.922 0.872 0.933 0.916 0.893 0.835 0.936 0.780 0.886
NeuS (DT) 0.975 0.907 0.934 0.975 0.949 0.921 0.981 0.840 0.935
nerf2mesh 0.964 0.927 0.967 0.970 0.957 0.896 0.974 0.865 0.940
nvdiffrec (m) 0.970 0.915 0.937 0.973 0.943 0.927 0.975 0.820 0.932
Ours (F) 0.977 0.935 0.974 0.978 0.978 0.925 0.981 0.865 0.952
Ours (HQ) 0.981 0.939 0.977 0.981 0.982 0.930 0.986 0.877 0.956
Ours (F-m) 0.976 0.932 0.970 0.978 0.976 0.923 0.980 0.859 0.949
Ours (HQ-m) 0.981 0.935 0.973 0.981 0.979 0.928 0.985 0.871 0.954
LPIPS
MobileNeRF 0.025 0.077 0.048 0.050 0.025 0.092 0.032 0.145 0.062
nvdiffrec 0.023 0.086 0.032 0.064 0.047 0.111 0.031 0.188 0.073
TensoRF (DT) 0.076 0.130 0.070 0.113 0.090 0.146 0.070 0.230 0.115
NeuS (DT) 0.033 0.101 0.065 0.041 0.056 0.084 0.021 0.191 0.074
nerf2mesh 0.046 0.084 0.045 0.060 0.047 0.107 0.042 0.145 0.072
nvdiffrec (m) 0.020 0.104 0.057 0.068 0.059 0.116 0.028 0.220 0.084
Ours (F) 0.036 0.073 0.035 0.041 0.027 0.089 0.024 0.167 0.061
Ours (HQ) 0.026 0.068 0.033 0.035 0.023 0.085 0.017 0.159 0.056
Ours (F-m) 0.037 0.079 0.040 0.043 0.031 0.091 0.024 0.174 0.065
Ours (HQ-m) 0.027 0.074 0.038 0.036 0.027 0.086 0.017 0.164 0.059



O
ur

s
O

ur
s (

w
/ �

)
G

T
O

ur
s

O
ur

s (
w

/ �
)

G
T

Figure 9. LLFF renderings.



Figure 10. LLFF mesh.

Table 5. Appearance network architecture of Ours (HQ) and Ours (F) for NeRF-Synthetic.

Name High-Quality Fast
app matrix xy Param (48 x 300 x 300) Param (48 x 300 x 300)
app matrix yz Param (48 x 300 x 300) Param (48 x 300 x 300)
app matrix zx Param (48 x 300 x 300) Param (48 x 300 x 300)
app vector x Param (48 x 300 x 1) Param (48 x 300 x 1)
app vector y Param (48 x 300 x 1) Param (48 x 300 x 1)
app vector z Param (48 x 300 x 1) Param (48 x 300 x 1)
basis mat Linear (144, 12, bias=False) Linear (144, 27, bias=False)
last layer Linear (99, 64, bias=True)

ReLU (inlace=True)
Linear (64, 64, bias=True) Spherical Harmonics

ReLU (inlace=True)
Linear (64, 3, bias=True)

Figure 11. VSA plots for different misalignment tolerances.



TensoRF+MC iNeuS+MC nvdi�rec (w/o �) Ours-F Ours GT

Figure 12. NeRF-Synthetic renderings.



MobileNeRF* TensoRF+MC iNeuS+MC nvdi�rec (w/o �) nerf2mesh* Ours GT

Figure 13. NeRF-Synthetic mesh.



Table 6. Trade-off between rendering speed and quality with dif-
ferent appearance network capacity. 8× MS: 8× sample per-pixel
MSAA, 16× SS: 16× sample per-pixel SSAA.

Params AA PSNR↑ SSIM↑ LPIPS↓ FPS
#feat=48 8× MS 30.34 0.949 0.062 93
mlp=3×64 16× SS 31.16 0.954 0.057 26
#feat=48 8× MS 29.73 0.942 0.071 322
mlp=3×16 16× SS 30.49 0.947 0.064 86
#feat=12 8× MS 30.11 0.946 0.066 98
mlp=3×64 16× SS 30.90 0.951 0.060 27
#feat=12 8× MS 29.55 0.941 0.073 585
mlp=3×16 16× SS 30.28 0.946 0.066 163
#feat=48 8× MS 29.73 0.943 0.068 312
SH 16× SS 30.44 0.949 0.063 82

Table 7. Ablation study for Stage 2. Except for the first row
using GT mesh, the rest experiments are conducted on fixed
meshes extracted from pre-trained TensoRF by Marching Cubes.
MLP: vanilla NeRF [6] representation; Hash: HashGrid used in
iNGP [7]; SH: Spherical Harmonics; TF: TensoRF-VM.

Geo. + App. PSNR↑ SSIM↑ LPIPS↓
GT + TF 31.78 0.958 0.053
TFmesh + MLP 26.28 0.915 0.203
TFmesh + Hash 26.62 0.921 0.090
TFmesh + SH 26.48 0.909 0.103
TFmesh + TF 27.00 0.929 0.081


