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In this supplementary materials, a unique labeling with
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from the main paper references.

A. Evaluation Metrics

In this section, we present the definitions of the three
evaluation metrics we used in our experiments, supplement-
ing Section 4.2 in the main paper.

Let a; ; be the testing accuracy on the i*" task after train-
ing on j*" task. The total number of tasks is denoted by 7.

Final Accuracy The final accuracy Apiny is calculated as
the average accuracy across all tasks after training on the
final task:
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Area Under the Curve of Accuracy The Aayc (Area
Under the Curve of Accuracy) is defined as the area un-
der the curve (AUC) of the accuracy-to-# of samples curve
[125]. To construct the curve, the accuracy is measure af-
ter each sample is observed. Aayc measures the any time
inference accuracy of the model:

k
Asue =Y f(i-An) - An, 2)
i=1
where the step size An is defined as An = 1, rep-

resenting the number of samples observed between infer-
ence queries, and f(-) denotes the curve in the accuracy-
to-{number of samples} plot. A high Aayc indicates that
the method consistently maintains high accuracy through-
out training.

Forgetting Forgetting is defined as the averaged differ-
ences between the historical maximum accuracy of task k
and the accuracy of task & after all tasks finish training:
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The last task 7" is excluded because the forgetting of the
last task is always O.

B. Experimental Details

In this section, we provide details of the experiments we
reported in the paper, supplementing Section 4 in the main

paper.

Data preprocessing Because we focus on the ViT archi-
tectures ViT-B/16 and ViT-S/16, all input images are resized
to 224 x224 and normalized to [0, 1].

Hyperparameters For tuning the threshold values for
each dataset (CIFAR-100 [112], ImageNet-R [110],
ImageNet-S [123], CUB-200 [122], and CORe50 [116]),
we conducted a grid search following the protocol in [117].
The threshold grid is shown in Table S1. Table S2 shows the
threshold values we used in our experiments. For CIFAR-
100, ImageNet-R, and ImageNet-S, these threshold val-
ues remain consistent in both disjoint and Si-blurry class-
incremental scenarios.

We set the regularization factor A=2000.0 (see Equa-
tion 7 in the main paper) for all experiments.

C. Loss Surface

Figure S1 shows more qualitative examples of how the
loss surface recognizes data distribution shifts, supplement-
ing Section 3.2 in the main paper. MAS [103] introduces the
loss surface to derive information about incoming stream-
ing data in the task-free scenario. As shown in Figure S1,
the peaks on the loss surface indicate shifts in the input data
distribution. And the stable regions, namely plateaus, sig-
nal the convergence of the model. For instance, the Split



Threshold CIFAR-100 ImageNet-R

ImageNet-S

CUB-200 CORe50

Mean [2.2,2.6,2.8,3.0]
Variance

[5.2,5.4,5.6,5.8,6.0]
[0.02, 0.03, 0.04, 0.06, 0.08, 0.1]

[18.0, 24.0, 30.0]
[0.6, 0.8, 1.0, 1.2]

Table S1. Hyperparameter grid for the mean and variance threshold values of the loss window in our Online-LoRA.

Threshold CIFAR-100 ImageNet-R ImageNet-S CORe50 CUB-200

Mean 2.6 5.2 5.6 6.0 24.0
Variance 0.03 0.02 0.06 0.1 1.0

Table S2. Mean and variance thresholds of the loss window for
different datasets.
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Figure S1. Loss surface of Online-LoRA on Split CIFAR-100 us-
ing ViT-B/16 model. Note that other peaks and plateaus exist but
are not marked.

CIFAR-100 dataset has 10 distinct tasks, with the data dis-
tribution remaining constant within each task. As a result,
during the learning process of Split CIFAR-100, there are 9
shifts in data distribution, corresponding to 9 peaks in the
loss surface, as illustrated in Figure S1.

To identify plateaus on the loss surface, we employ a loss
window, which is a sliding window that moves across con-
secutive training losses. Within this window, we closely ob-
serve both the mean and variance of the losses. A plateau is
identified when both metrics fall below a predefined thresh-
old (see Appendix B for details). Upon detecting a plateau,
we proceed to introduce new LoRA parameters and update
the estimation of the model parameter importance. Our goal
in identifying plateaus is to mark periods of stable predic-
tion following shifts in data distribution. Therefore, we only
classify a phase as a plateau if it follows a peak. A peak
is recognized when the loss window’s mean increases by
an amount exceeding the standard deviation of the window
within a single batch.

D. Results of Swin Transformer

In this section, we present the results for the disjoint
class-incremental and domain-incremental settings (for de-

tails on these settings, see Section 4.1 in the main paper)
using the Swin Transformer architecture [115]. For a fair
comparison, the hyperparameters for the baseline methods
are set according to the descriptions in Appendix F.3. For
our method, we use a learning rate of 0.0003 for the Swin
Transformer.

As shown in Table S3, our approach consistently out-
performs other baseline methods in both disjoint class-
incremental and domain-incremental learning settings. This
demonstrates that our method remains effective across var-
ious ViT architectures, extending beyond the ViT-B/16 and
ViT-S/16 models reported in Section 4.3 of the main paper.

E. Supplementary Ablation Study
E.1. Ablation Study on Imagenet-S Dataset

In addition to the ablation results on Split Imagenet-R
presented in Section 4.5 of the main paper, this section pro-
vides further ablation results on the Split Imagenet-Sketch
dataset with varying task lengths. As shown in Table S4,
our Online-LoRA consistently outperforms other variants
that lack certain components. These results demonstrate
that both the hard buffer loss and incremental LoRA, along
with online parameter regularization, are crucial for the per-
formance of our approach.

The baseline involves continuous fine-tuning of a single
set of LoRA parameters. In contrast, Online-LoRA intro-
duces an incremental LoRA architecture coupled with pa-
rameter importance-based regularization, and preserves a
hard buffer along with its loss computations. Individually,
each component improves performance and reduces forget-
ting. However, integrating both components into the base-
line achieves the optimal performance, demonstrating the
efficacy of our complete approach.

E.2. Impact of Pre-trained Weights

In this section, we demonstrate that our experimental set-
tings do not provide any unfair advantage to our Online-
LoRA approach through the use of pre-trained ViT models.

First, it is important to note that all baseline meth-
ods in our experiments utilize the same pre-trained ViT
models as their backbones, just like Online-LoRA. Conse-
quently, all methods benefit from the pre-training to vary-
ing extents, particularly those originally implemented with
ResNet18 backbones (Table S6). For detailed information



Method Split-ImageNet-S CORe50
Afinal (1) Forgetting (1) Apina (1) Forgetting (])

AGEM [106] 31.67+0.96 50.12+0.27 90.15+1.31 1.16+0.05
ER [107] 42.60+0.75 38.68+0.26 88.93+2.99 4.16+0.09
EWC++[105] 29.57+157 51.87+0.04 90.91+1.28 0.04+0.02
MIR [102] 42.9040.19 38.49+0.15 87.47+0.65 5.67+0.14
GDumb [120] 14.76+1.13 - 79.52+3.00 -

Ours 53.75+0.29 32.86+0.89 95.29+0.06 0.00-0.00
UB 71.98+0.23 - 97.56+0.02 -

Table S3. Results of disjoint class-incremental learning and domain-incremental learning using Swin Transformer. “f* means higher is
better and ‘]’ means lower is better. The best results are noted by bold. UB is the upper-bound performance. With Swin Transformer,
our Online-LoRA method consistently outperforms other baseline methods across various settings, demonstrating its adaptability and
effectiveness across different ViT architectures.

Incremental LoORA  Hard loss ‘ 10 tasks ‘ 20 tasks
| Afina (1) Forgetting (1) | Apina (1) Forgetting (1)
- - 30.66+0.25 38.70+0.40 24.49+2.61 39.29+2.57
v - 31.11+2.60 34.62+2.98 32.4740.29 33.1441.39
- v 36.26+0.12 39.29+2557 35.43+4.99 32.56+272
v v | 47.06:+0.24 28.09+325 | 44.19+2.09 28.48+0.24

Table S4. Ablation results of ViT-B/16 model on Split ImageNet-Sketch dataset. ‘1’ means higher is better and ‘|’ means lower is better.
“Incremental LORA”: introducing new, trainable LoRA at each loss plateau with the model parameter regularization in Equation 7 in paper.
“Hard loss”: including £L(F(Xp;0), Y) (the loss from hard buffer samples) in the final learning objective in Equation 6 in paper. A check
mark (v) indicates the presence of the component, while a dash (—) indicates its absence.

on the backbones used by each baseline, please refer to Ap-
pendix F.2.

Second, we show that simply using pre-trained models
without applying any CL methods or strategies fails to yield
competitive performance. To illustrate this, we introduce
three simple baselines:

* Frozen FT: This baseline freezes the pre-trained back-
bone (feature extractor). Only the classification head
(the final layer used for classification) is continuously
fine-tuned on the data stream. Given that the model is
pre-trained on the ImageNet-21K dataset, if any unfair
advantage exists due to data leakage or other factors,
it should be evident here by showing strong perfor-
mance.

* Continual FT: This baseline fully fine-tunes the pre-
trained model, including both the backbone and the
classification head, on each new data batch. This is
consistent with our OCL setting where the model en-
counters each data batch only once. If the pre-trained
weights alone brings any unfair advantage, this base-
line should perform competitively, similar to methods
specifically designed for CL.

* Random Head: This baseline uses the pre-trained
model’s backbone with a newly initialized classifier
head and performs only inference without any fine-
tuning. Since the classifier head is randomly initial-
ized, it should provide a clear lower bound for per-
formance, demonstrating that without any adaptation
or learning, the model’s performance is essentially at
chance level.

As shown in Table S5, Random Head baseline achieves
near-zero accuracy, confirming that merely using pre-
trained weights without adaptation to the test dataset does
not have an advantage. Although the Frozen FT and Con-
tinual FT baselines outperform some CL methods (which
also use the same pre-trained models), they still suffer from
severe forgetting and exhibit a significant performance gap
compared to other methods, particularly our Online-LoRA,
with nearly a 20% difference in final accuracy and a 30%
difference in forgetting.

These results demonstrate that the performance advan-
tages of our Online-LoRA method over the baseline CL
methods are not simply due to the use of pre-trained models.
Instead, they arise from the effectiveness of our approach.
The pre-trained weights provide a common foundation for



Method Accuracy (1) Forgetting ({)
Random Head 0.08+0.00 -
Frozen FT 27.98+0.29 55.1240.43
Continual FT 28.49+0.21 53.4940.07
AGEM [1006] 5.60+2.74 53.97+1.97
ER [107] 40.99+3.96 32.38+0.89
EWC++ [105] 3.86+2.02 56.95+1.46
MIR [102] 41.51+2.99 31.32+45.17
GDumb [120] 1.65+0.22 -
PCR [114] 46.11+3.03 25.50+0.41
DER++ [104] 30.90+8.04 24.26+4.14
LODE (DER++) [113] 42.20+6.46 31.83+1.05
EMA (DER++) [121] 41.75+1.98 32.65+1.55
EMA (RAR) [121] 30.04+033 39.3640.04
Online-LoRA (ours) 48.18+0.63 23.85+1.48
UB 63.82+0.02 -

Table S5. Performance comparison between pre-trained models
without CL strategies and pre-trained models with CL strategies on
Split ImageNet-R (online class-incremental learning setting). ViT-
B/16 backbone is used. While some methods do not outperform
simple fine-tuning on a continuous data stream, other CL methods
provide significant performance improvements to the pre-trained
model. This demonstrates that the advantages of CL methods, in-
cluding Online-LoRA, are not solely due to the use of pre-trained
weights but also stem from the effectiveness of the methods them-
selves. UB is the upper-bound baseline trained on the i.i.d. data of
the datasets. The best results are noted by bold.

all methods, but it is our approach that leads to superior per-
formance.

F. Baseline Settings

In this section, we provide the experimental settings for
the baseline methods used in our experiments'.

F.1. Overview of Baselines

* AGEM [106]: Averaged Gradient Episodic Memory,
utilizes samples in the memory buffer to constrain pa-
rameter updates.

« ER [I107]: Experience replay, a rehearsal-based
method with random sampling in memory retrieval and
reservoir sampling in memory update.

e EWC++ [105]: An online version of EWC [111], a
regularization method that limits the update of param-
eters crucial to past tasks.

ICodebases  used: https://github.com/AlbinSou/online_ema.git,
https://github.com/liangyanshuo/Loss-Decoupling-for-Task-Agnostic-
Continual-Learning.git, https://github.com/FelixHuiweiLin/PCR.git,
https://github.com/RaptorMai/online-continual-learning.git

e MIR [102]: Maximally Interfered Retrieval, a
rehearsal-based method that retrieves memory samples
with loss increases given the estimated parameter up-
date based on the current batch.

e GDumb [120]: Greedy Sampler and Dumb Learner,
a strong baseline that greedily updates the memory
buffer from the data stream with the constraint to keep
a balanced class distribution.

« PCR [114]: Proxy-based contrastive replay, a
rehearsal-based method that replaces the samples for
anchor with proxies in a contrastive-based loss.

* DER++ [104]: Dark Experience Replay++, a
rehearsal-based method using knowledge distillation
from past experiences.

* LODE [113]: Loss Decoupling, a rehearsal-based
method that decouples the learning objectives of old
and new tasks to minimize interference.

« EMA [121]: Exponential Moving Average, a model
ensemble method that combines models from various
training tasks.

e L2P [124]: Learning to Prompt, a prompt-based
method that prepends learnable prompts selected from
a prompt pool to the embeddings of a pre-trained trans-
former.

e MVP [119]: Mask and Visual Prompt tuning, a
prompt-based method that uses instance-wise feature
space masking.

F.2. Backbone

Among the baseline methods we compare, L2P [124]
and MVP [ 1 19] originally reported results using a ViT-B/16
model [108] pre-trained on ImageNet21k, while the other
baselines (AGEM [106], ER [107], EWC++ [105], MIR
[102], GDumb [120], DER++ [104], PCR [114], LODE
[113], EMA [121]) reported results using a ResNet18 [109]
architecture.

To ensure a fair comparison, we standardized our experi-
mental setup by evaluating all baselines using the same pre-
trained ViT model (ViT-B/16 and ViT-S/16). For methods
originally implemented with ResNet18, we reimplemented
them with ViT to match the experimental conditions of L2P
and MVP. As shown in Table S6, all methods perform bet-
ter with the pre-trained ViT-B/16 than with ResNet18, sup-
porting our argument that using a pre-trained ViT provides a
more consistent and stronger baseline for performance com-
parisons.
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Method Acc. w/ ResNetl8 Acc. w/ ViT-B/16  Performance Gain (%)
AGEM [100] 5.4+06 12.67+1.87 134.63
ER [107] 14.5+08 44.85+1.83 209.31
EWC++ [105] 4.8+02 10.61+0.74 121.04
MIR [102] 14.8+0.7 48.36+3.11 226.76
GDumb [120] 24.840.7 41.00+19.97 65.32
PCR [114] 21.8+09 48.48+0.15 122.39
DER++ [104] 15.5+10 36.64+6.11 136.39
LODE (DER++) [113] 37.8+1.1 44.29+1.48 17.17
EMA (DER++) [121] 23.2+12 42.28+4.36 82.24
EMA (RAR) [121] 354+12 47.10+0.82 33.05

Table S6. Performance comparison on CIFAR-100 between ResNet18 and pre-trained ViT-B/16 in an online class-incremental learning
scenario. Acc. stands for Accuracy. All rehearsal-based methods use a buffer size of 500 for fair comparison. The results demonstrate that
there is no unfair comparison in our experiments, as all methods benefit from the pre-trained ViT-B/16 model. The performance gain is
computed as the percentage increase from the ResNet18 accuracy to the ViT-B/16 accuracy for each method.

F.3. Training Settings

The following settings are shared by the baseline meth-
ods (and our Online-LoRA) in the experiments:

» Buffer Size: 500. Methods using a buffer include

AGEM [106], ER [107], MIR [102], GDumb [120],
PCR [114], DER++ [104], LODE [!113], and EMA
[121].

* Optimizer: Adam.
* Batch Size: 64.

In Table S7, we summarize the hyperparameters used for
all baseline methods in our experiments. To ensure a fair
comparison, we adopted these hyperparameters from their
original codebases. However, because the baseline meth-
ods used different backbones and batch sizes in their orig-
inal experiments, we adjusted the learning rates for some
baselines to standardize the comparison across all methods.
For tuning the learning rates, we followed the protocol out-
lined in [1 17] and conducted a grid search on a small cross-
validation set. The hyperparameter grid for the baselines is
detailed in Table S8.

G. Exploration with Buffer Size

Table S9 we show more results of the impact of buffer
sizes on the performance of replay-based methods (AGEM
[106], ER [107], GDumb [120], MIR [102]).

As shown in Table S9, when the buffer size increases,
all replay-based methods see improvements in their perfor-
mance across the benchmarks. Notably, when the buffer
size hits 5000 (a large capacity; 20% of the ImageNet-R
training set, 12.5% of the ImageNet-S training set), the dif-
ference in performance between GDumb and other replay-
based methods narrows. This suggests that the sophisticated

memory retrieval strategies employed by these other meth-
ods do not significantly outperform GDumb’s simple ap-
proach of training directly on the buffered data. Moreover,
the performance of rehearsal-based methods drops when the
buffer size shrinks. This highlights the efficiency of our
Online-LoRA, which achieves high performance using just
a minimal buffer size of 4.

H. Computation Analysis

In this section, we present the model parameter size,
training FLOPs, and training time for our Online-LoRA and
the baseline methods.

As shown in Table H, our Online-LoRA model intro-
duces approximately 0.6M additional parameters due to the
inclusion of LoRA parameters, which represents a negli-
gible increase (0.69%) compared to the original size of
the ViT-B/16 model. Notably, our memory buffer con-
tains only 4 data samples, whereas other baselines (except
EWC++) require at least 500 samples in their buffers to
achieve comparable performance (see Appendix G for more
details). Regarding computational consumption measured
by FLOPs during training, Online-LoRA demonstrates ad-
vantages over EWC++ [105], thanks to our efficient com-
putation of the importance weight matrix, as explained in
Section 3.3 of the main paper. The extremely low FLOPs of
GDumb [120] can be attributed to its design, which involves
greedily updating the memory buffer without employing ad-
ditional strategies. However, its training time is relatively
high because retraining is triggered frequently to maintain
a balanced memory buffer, which adds overhead despite the
low FLOPs.



Method CIFAR-100 ImageNet-R ImageNet-S CUB-200 CORe50

AGEM [106] LR=0.0001, WD=0.0001

ER [107] LR=0.0001, WD=0.0001, Episode memory per batch=10

LR=0.0001, WD=0.0001, A=100, a=0.9

EWC+[10°] Number of training batches after which the Fisher information will be updated: 50

MIR [102] LR=0.0001, WD=0.0001, Number of subsample=50
Gow 11 L ool Mt e 003
PCR [114] LR=0.0001, WD=0.0001, Episode memory per ba.tch=10,
Temperature=0.09, Warmup of buffer before retrieve=4
DER++ [104] LR=0.0003, «=0.2, 5=0.5
LODE [113] LR=0.0003, C'=1.0, p=0.1
EMA [121] LR=0.0002, X for warm-up: 0.9, \=0.99
L2P [124] LR=0.003, Size of the prompt pool=10, Length of a single prompt=10, Number of prepended prompt=4
MVP [119] LR=0.005, v=2.0, m=0.5, a=0.5

Table S7. Hyperparameters for the baseline methods on ViT-B/16. LR: learning rate. WD: weight decay.

Method CIFAR-100 ImageNet-R ImageNet-S CUB-200 CORe50

LR: [0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1]

AGEM [106] WD: [0.0001, 0.001, 0.01, 0.1]
LR: [0.0001. 0.0003. 0.001, 0.003]
ER [107] WD: [0.0001, 0.001, 0.01, 0.1]
, LR: [0.0001, 0.001, 0.01, 0.1]
g
EWC+ [105] WD: [0.0001, 0.001]
LR: [0.0001, 0.001, 0.01, 0.1]
]
MIR [102] WD: [0.0001, 0.001]
LR: [0.001, 0.01, 0.1
’7 b b
GDumb [120] WD: [0.0001, 0.000001]
oo L1171 LR: [0.0001, 0.001, 0.01, 0.1]
WD: [0.0001, 0.001]
DER++ [104] LR: [0.0003, 0.003, 0.03]
LODE [113] LR: [0.0003, 0.003, 0.03]
EMA [121] LR: [0.0001. 0.0002. 0.0003. 0.0004, 0.0005]

Table S8. Hyperparameter grid for the baseline methods using the ViT-B/16 backbone. LR: learning rate; WD: weight decay. Since
L2P [124] and MVP [119] use the same backbone and batch size as in our experiments, their learning rates were not adjusted.

I. Task Accuracy model is employed on the Split ImageNet-S dataset with
20 tasks. These results demonstrate that our Online-LoRA
consistently outperforms the other methods in mitigating

In this section, Figure S2 and Figure S3 show task accu- the forgetting of previously learned tasks.

racy as a function of the number of learning tasks as de-
scribed in Section 4.4 in the main paper. The ViT-B/16 Figure S2a shows that AGEM [106] begins with an ini-



Buffer size Method Split-ImageNet-R  Split-ImageNet-S Core50
AGEM [100] 5.60+2.74 0.16+0.04 80.15+2.97
500 ER [107] 40.99+3.96 30.21+0.70 85.85+135
MIR [102] 41.51+2.99 30.33+3.81 74.35+4.07
GDumb [120] 8.87+136 1.65+0.22 77.20+3.49
AGEM [100] 7.16+1.56 0.23+0.04 78.73+3.87
1000 ER [107] 44.71+2.63 34.32+053 84.27+4.11
MIR [102] 46.65+5.63 33.99+1.72 82.64+1.12
GDumb [120] 19.19+1.36 2.7140.12 78.09+3.75
AGEM [106] 7.21+034 0.12+0.02 77.57+3.56
5000 ER [107] 47.23+2.71 37.65+0.23 81.32+2.19
MIR [102] 49.33+3.49 35.90+235 81.18+3.20
GDumb [120] 46.08+0.64 9.68+0.28 69.42+1.06
Ours 48.18+0.63 47.06+0.24 93.71+0.01
UB 76.78+0.44 63.8240.02 95.60+0.01

Table S9. Results of replay-based methods with different buffer size. Agina metric and ViT-B/16 model is used. Each dataset has 10 disjoint
tasks. UB is the upper-bound baseline trained on the i.i.d. data of the datasets. The best results are noted by bold.

Method #params (M) FLOPs (x10'%)  Training time (s)
AGEM [106] 85.88 140.52 828.39
ER [107] 85.88 140.05 849.43
EWC++ [105] 85.88 214.36 1076.53
GDumb [120] 85.88 18.44 2078.59
MIR [102] 85.88 161.04 1069.29
Ours 86.47 151.20 864.60

Table S10. Computational statistics for Online-LoRA and baseline methods on CIFAR-100 in the online class-incremental learning scenario

using the ViT-B/16 backbone. FLOPs are measured as ‘forward FLOPs per GPU’ using the DeepSpeed FLOPS Profiler [

experiments are conducted on a single NVIDIA A100 GPU.

tial accuracy of ~10%. However, this accuracy drastically
decreases for subsequent tasks, eventually dropping to zero.
Given that the Split ImageNet-S dataset consists of 20 tasks
with 500 classes per task, AGEM’s performance is no bet-
ter than that of a random model, which would have an ex-
pected accuracy of 0.2%. This dramatic decline is primarily
due to the increasingly restrictive constraints placed on gra-
dient updates as the number of tasks increases. Such con-
straints significantly hurt the model’s ability to learn from
new tasks, showing a fundamental weakness of AGEM in
handling long sequences of diverse tasks. A similar issue
was observed with EWC++ [105], another regularization-
based approach.

In contrast, our Online-LoRA model does not encounter
this problem even though an online weight regularization is
used. This is because our model is continuously expanded
by adding new LoRA parameters (see Section 3.2 in the
main paper). This strategy allows the model to adapt to
new information more flexibly, bypassing the learning lim-

1. All

itations encountered by traditional regularization methods
like AGEM and EWC++.

J. Code

We provide the code of our Online-LoRA as part of the
supplementary materials. Our implementation of LoRA is
based on the codebase of MeLo [126]. See the README
file for more details.
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Figure S2. Task accuracy versus the number of learning tasks of task #2 to task #9. Our Online-LoRA consistently outperforms all the
other methods in maintaining accuracy on previously learned tasks. Note that the recorded accuracy for initial tasks is zero, not due to poor
model performance, but because our evaluation prioritizes mitigating forgetting in tasks the model has already encountered.
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Figure S3. Task accuracy versus the number of learning tasks of task #11 to task #17. Compared to the results of task #2 to task #9 in
Figure S2, our Online-LoRA has greater advantages over the other methods for these newer tasks #11 to task #17. Zero accuracy for initial
tasks results from not measuring them at the time the specific task had not been learned yet.
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