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Abstract

In this supplementary document, we first describe the im-
plementation details of our proposed approach EAFormer
and illustrate its architecture in detail. In Sec. 2, we pro-
vide additional quantitative and qualitative results to sup-
port the claims made in the main paper. Finally, we discuss
the limitations of our approach in Sec. 3.

1. Implementation and Architecture Details

Our architecture consists of an EfficientNet-B4 [5] im-
age backbone that outputs multi-scale image feature maps.
For nuScenes [1], we process all 6 cameras, while Argov-
erse 2 (AV2) [6] provides 7 ring-cameras as well as a stereo-
camera setup with two image streams.

Based on our ablation study, we have chosen the fea-
ture map outputs with scales of 1/4 and 1/16 as our default
scales. For each feature map scale, the Epipolar Trans-
former Encoder generates new bird’s eye features, which
serve as input queries for the next Epipolar Transformer
Encoder stage. Specifically, encoder’s output for the fea-
ture map scale of 1/4 serves as input query for the next en-
coder stage, which attends to the queries for the features of
scale of 1/16. The final output is upsampled by a decoder
with three ASPP [2] blocks outputting the final semantic
segmentation mask.

Four heads are used per Epipolar Transformer Encoder
block with a dimensionality of 32. By default, the distance
strength parameter is set to A = 1. As for CVT [8], we use
AdamW [3] with a one-cycle learning rate scheduling [4]
and a target learning rate of 0.004. Additionally, weight de-
cay regularization is utilized, and the default training dura-
tion is 30 epochs. For studies involving pixel augmentation,
we use color jittering, image sharpening, and pixel dropout
with a dropout rate of 0.5.

We project the epipolar line onto each view and compute
the Epipolar Attention Fields (EAF) using the coordinates
of the image feature maps and the bird’s eye view feature

Figure 1. Visualization of Epipolar Attention Fields for specific
grid locations. We depict the images of the front and front-side
cameras. For two 3D object annotations (green) (a), we project
the object center (red crosses) onto the ground and overlay the re-
sulting Epipolar Attention Fields to the images (b). The figures (c)
and (d) depict the individual heatmaps of the Epipolar Attention
Field for each selected object location.

grid. For two distinct spatial positions, the EAFs are vi-
sulized in Fig. 1. The EAF serve as attention weight W in
the weighted attention computation:
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The bird’s eye view feature grid elements represent the
queries Q used for attention computation. The keys and
values correspond to the image features. It is important
to note that the keys do not include any positional encod-
ings. The attention weights I provide information on spa-
tial relationships, which is accounted for by computing the
Hadamard product between the scaled dot product and the
EAF. In Fig. 2, we present a decomposed visualization of
the key elements of our architecture.
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Figure 2. Simplified illustration of the key elements of our EAFormer architecture. The epipolar attention is computed iteratively for
each scale of the image feature maps. First, we compute the epipolar lines for the all BEV coordinates and all views. Then, the Epipolar
Attention Fields (EAF) are calculated based on the distance of each image feature coordinate to the epipolar line. We compute the attention
between the input queries (Q) and the image features (V, K) for each Epipolar Transformer Encoder, weighted by the EAFs (W). After a
convolution operation, the output is used as the input query for the next Epipolar Transformer Encoder.

Table 1. Intra-dataset evaluation for nuScenes. The zero-shot
transfer experiments demonstrate the impact of domain shift and
minor camera parameter deviations for two different cities within
the same dataset. Initially, the methods are trained for 30 epochs
on the source split, i.e., either Boston or Singapore. Then, without
retraining, they are evaluated on the target split. We denote the
zero-shot transfer from source dataset/split to target dataset/split
as: source dataset — target dataset.

nuScenes Boston Singapore

— nuScenes — Singapore  — Boston
CVT 36.69 17.38 17.68
EAFormer 38.76 18.89 18.68

2. Additional Experimental Results

In Tab. 2, results for the distance-based evaluation for
the vehicle segmentation on AV2 are depicted. EAFormer
shows almost consistently better segmentation performance
for each depth interval. However, the performance gain for
far range objects is not as evident as it is for nuScenes. Fur-
ther experiments were performed by exchanging the front-
view ring camera with the stereo cameras. The results
are depicted in Tab. 3. The results show superior perfor-
mance of EAFormer for the vehicle segmentation task when
compared to CVT. However, the AV2 dataset is missing

stereo camera calibration information for multiple scenes
and these were filtered for these experiments. The dataset
was reduced significantly and, thus, the results are not di-
rectly comparable to the evaluation with the standard cam-
era configuration.

In addition to the cross-dataset evaluation, we observed
that the camera parameters differ between the two cities
in nuScenes, namely Boston and Singapore. In Tab. 1,
we present the evaluation results for the zero-shot transfer,
where we train on the one city and evaluate on the other.
It is worth noting that the two cities are located on differ-
ent continents and are subject to a domain shift. The results
show that EAFormer generalizes slightly better than CVT.

Fig. 4 qualitatively shows the cross-dataset performance
of EAFormer when trained on AV?2 and evaluated (in a zero-
shot transfer) on nuScenes. The figure illustrates the su-
perior generalization capability of EAFormer compared to
CVT.

Fig. 5 provides visualizations that illustrate the issue of
the overlapping training and validation splits for the map
annotation. The ground truth annotation also includes areas
that may not be visible in the current frame. However, since
the maps in the training and validation splits of nuScenes
overlap, the network trained on the original split can predict
non-visible streets or occluded junctions. This undermines
the generalization capability of the networks trained on this
data split. We also demonstrate the network’s performance



Table 2. Distance-based evaluation (mloU) for vehicle segmentation on Argoverse 2 (AV2). The standard ring camera configuration with
7 cameras is utilized.

| Epochs | 0-10m  10-20m  20-30m  30-40m  40-50m | mloU

CVT 12 72.43 59.02 42.48 29.55 20.71 38.00
EAFormer 12 74.26 60.12 42.76 30.08 20.25 38.66
CVT 30 73.73 59.47 42.74 30.25 214 38.47
EAFormer 30 74.44 60.38 43.54 31.5 22.0 39.6

Table 3. Distance-based evaluation (mloU) for vehicle segmentation on Argoverse 2 (AV2) with stereo cameras. We replaced the front-ring
camera with the stereo cameras for this experimental setup. Due to missing calibration data for the stereo cameras in the official dataset,
the dataset size is reduced significantly compared to the standard camera configuration.

| Epochs | 0-10m 10-20m  20-30m  30-40m  40-50m | mloU

CVT 12 72.49 58.91 41.84 28.8 19.93 37.61
EAFormer 12 74.13 59.99 43.05 30.61 21.14 389
CVT 30 73.77 59.16 42.02 29.02 20.06 37.54
EAFormer 30 74.63 60.23 43.00 30.47 20.97 38.89

on the more realistic datasplit proposed by Yuan et al. [7].
As mentioned in our main paper, there is a significant de-
crease in performance. However, the semantic segmenta-
tion output clearly shows that the network cannot predict
non-visible areas and therefore must focus more on visible
image cues.

3. Limitations

Well-calibrated cameras are crucial for the final predic-
tion performance of BEV perception approaches that rely
on camera parameters. Although Epipolar Attention Fields
account for parameter deviations, significant changes can
still result in a major decrease in performance.

During training and for different camera settings, we
must compute the essential matrix for the Epipolar At-
tention Fields online, which incurs additional computa-
tional overhead. For trainings involving data with non-
changing camera parameters, the essential matrix can be
pre-computed. Similarly, during deployment, it is impor-
tant to account for changes in camera parameters that may
be induced by online calibration. For each updated set of
camera parameters, the essential matrix must also be up-
dated for our approach.
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Figure 3. Visualization of zero-shot transfer performance for EAFormer and CVT. The models were trained on nuScenes and are evaluated
on Argoverse 2 (AV2).
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Figure 4. Visualization of zero-shot transfer performance for EAFormer and CVT. The models were trained on Argoverse 2 (AV2) and are
evaluated on nuScenes.



Front Left T e Front Right

)

Ground Truth Orginial Split New Split

Ground Truth Orginial Split New Split

Figure 5. Additional visualizations of drivable area segmentation for networks trained on different splits. This figure shows further samples
from the nuScenes validation datasets. Below each sample, we show the ground truth semantic mask (left), predictions of our network
trained on the original split (middle) and on the disjoint split (right).
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