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1. Configuration details
1.1. Pre-training setup

Here, we provide the complete pre-training configuration
for all the methods that we evaluate in Sec. 4.2 of the main
paper. The DINO and CRiBo methods are pre-trained using
their publicly available repositories and we follow their de-
fault configuration. For completeness, we provide the full
configuration details for DINO in Tab. 1 and for CRiBo in
Tab. 2. Our proposed S3PT is based on the CRiBo reposi-
tory and we use a similar configuration to the defaults, ex-
cept for our proposed modifications. The full configuration
details of S3PT is provided in Tab. 3.

1.2. Evaluation protocols

In this section, we provide details about the evaluation
protocols and configurations used for different downstream
evaluation experiments, namely semantic segmentation, do-
main generalization and 3D object detection.

1.2.1 Semantic segmentation

We obtain dense feature representations from frozen back-
bones and only train the head network for semantic seg-
mentation on nuImages [1] and Cityscapes [4] datasets. We
consider a similar evaluation protocol as in CRiBo [5] and
use the linear decoder head from Segmenter [8]. This lin-
ear probing head maps the token features (16× 16 patches)
to class assignments and then uses a bilinear upsampling
to transform the outputs to image pixel dimensions. We
additionally, also evaluate the Mask Transformer decoder
head, with the same default configuration proposed in Seg-
menter. We use the mmsegmentation 1.2.2 [3] library
for evaluation and use the default 160K iterations training

Hyper-parameter ViT-Small/16 ViT-Base/16

training epochs 500 100
batch size 256 256
learning rate 5e−4 7.5e−4
warmup epochs 10 10
freeze last layer epochs 1 3
min. learning rate 1e−5 2e−6
weight decay 0.04 → 0.4 0.04 → 0.4
stochastic depth 0.1 0.1
gradient clip - 0.3
optimizer adamw adamw
fp16 ✓ ✓

momentum 0.996 → 1.0 0.996 → 1.0
global crops 2 2
global crops scale [0.25, 1.0] [0.25, 1.0]
local crops 10 10
local crops scale [0.05, 0.25] [0.05, 0.25]

head mlp layers 3 3
head hidden dim. 2048 2048
head bottleneck dim. 256 256
norm last layer ✗ ✓
num. prototypes 65536 65536

teacher temp. 0.04 → 0.07 0.04 → 0.07
temp. warmup epochs 30 50
student temp. 0.1 0.1

Table 1. Hyperparameter settings for DINO

schedule. For each pre-training method and dataset, the re-
sults reported in the tables are the best results after consid-
ering the following set of learning rates: {8e-4, 3e-4,
8e-5}, similar to other works which perform such evalua-
tions. For nuImages, we use the same dataset configuration
setup as the publicly available ade20k dataset configura-
tion in mmsegmentation. For Cityscapes, we use the
cityscapes 768x768 configuration. The configura-
tions for the linear probing and Mask Transformer decoder
heads in Segmenter are available in mmsegmentation.
For domain generalization experiments, we use the same se-
mantic segmentation models (frozen backbone and decoder
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Hyper-parameter ViT-Small/16 ViT-Base/16

training epochs 500 100
batch size 256 256
learning rate 5e−4 7.5e−4
warmup epochs 10 10
freeze last layer epochs 1 3
min. learning rate 1e−5 2e−6
weight decay 0.04 → 0.4 0.04 → 0.4
stochastic depth 0.1 0.1
gradient clip - 0.3
optimizer adamw adamw
fp16 ✓ ✓

momentum 0.996 → 1.0 0.996 → 1.0
global crops 2 2
global crops scale [0.25, 1.0] [0.32, 1.0]

head mlp layers 3 3
head hidden dim. 2048 2048
head bottleneck dim. 256 256
norm last layer ✗ ✓
num. prototypes 65536 65536

teacher temp. 0.04 → 0.07 0.04 → 0.07
temp. warmup epochs 30 50
student temp. 0.1 0.1

sinkhorn lambda 20.0 20.0
sinkhorn iterations 5 5
pos alpha [1.0, 1.0] [1.0, 1.0]
which features last last
num spatial clusters 32 32
queue size 25000 25000

Table 2. Hyperparameter settings for CRiBo

Hyper-parameter ViT-Small/16 ViT-Base/16

training epochs 500 100
batch size 256 256
learning rate 5e−4 7.5e−4
warmup epochs 10 10
freeze last layer epochs 1 3
min. learning rate 1e−5 2e−6
weight decay 0.04 → 0.4 0.04 → 0.4
stochastic depth 0.1 0.1
gradient clip - 0.3
optimizer adamw adamw
fp16 ✓ ✓

momentum 0.996 → 1.0 0.996 → 1.0
global crops 2 2
global crops scale [0.25, 1.0] [0.32, 1.0]

head mlp layers 3 3
head hidden dim. 2048 2048
head bottleneck dim. 256 256
norm last layer ✗ ✗
num. prototypes 65536 65536
vmf normalization ✓ ✓
centering probability probability

teacher temp. 0.04 → 0.07 0.04 → 0.07
temp. warmup epochs 30 50
student temp. 0.1 0.1

sinkhorn lambda 20.0 20.0
sinkhorn iterations 1 1
pos alpha [1.0, 1.0] [1.0, 1.0]
depth alpha [4.0, 4.0] [4.0, 4.0]
which features last last
num spatial clusters 128 128
queue size 2500 2500

Table 3. Hyperparameter settings for S3PT

head) trained using the above described setup.

1.2.2 3D object detection

For our test and training for 3D object detection task we
use mmdetection3D 1.4.0 [2]. For benchmarking, we
use camera-only 3D object detector PETR [7] (author’s im-
plementation in mmdetection3D library1). In short, PETR
encodes the position information of 3D coordinates into
image features, creating 3D position-aware features. This
allows object queries to perceive these features and per-
form end-to-end object detection. Essentially, PETR trans-
forms multi-view images into a unified 3D space by com-
bining positional information directly with the image fea-
tures. This approach enables the model to detect objects in
3D space using only camera data, without relying on Li-
DAR or other sensors.

The original backbone for PETR in mmdetection3D
implementation is VoVNetCP, based on the VoVNet [6], is
designed for efficient and effective feature extraction. It
uses a unique One-Shot Aggregation (OSA) module, which
concatenates features from multiple layers only once, re-
ducing computational overhead and improving efficiency.

For original benchmark, denoted as supervised in Tab. 4
(of the main paper), we used the backbone weights provided
by the authors2. This model is pre-trained on DDAD15M
and then, trained on nuScenes train set in a supervised man-
ner.

For self-supervised pre-training of image backbones
with methods: DINO, CRiBo and S3PT (ours) we used
weights obtained in pre-training, described in Sec. 4.2 of
the main paper (detailed above in Sec. 1.1). Next, we
trained PETR together with these backbones, however, with
frozen image backbone weights, thus gradients does not
flow through to the image backbone. Please, refer to Tab. 4
for detailed training setting and we use the cyclic-20e
scheduler from mmdetection3D.

2. Additional results

2.1. ViT backbones with different patch sizes

In addition to the standard ViTs with patch size 16 evalu-
ated in the main paper, we also evaluate the impact of using
different patch sizes in ViT-Small model. Specifically, we
evaluate patch sizes 14, 16 and 32. We avoid patch size 8,
as it is extremely compute expensive to train. We pre-train
these models using S3PT for 100 epochs with the same pre-
training configuration. Only difference is that we reduce the
number of spatial clusters to 32 for ViT-Small/32 due to the

1https://github.com/open-mmlab/mmdetection3d/
tree/main/projects/PETR

2https : / / drive . google . com / file / d /
1ABI5BoQCkCkP4B0pO5KBJ3Ni0tei0gZi/view

https://github.com/open-mmlab/mmdetection3d/tree/main/projects/PETR
https://github.com/open-mmlab/mmdetection3d/tree/main/projects/PETR
https://drive.google.com/file/d/1ABI5BoQCkCkP4B0pO5KBJ3Ni0tei0gZi/view
https://drive.google.com/file/d/1ABI5BoQCkCkP4B0pO5KBJ3Ni0tei0gZi/view
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1: Baseline
2: (1) + Semantic distribution consistent clustering

3: (2) + Object diversity consistent spatial clustering
4: (3) + Depth-guided spatial clustering = S3PT

Figure 1. Object-wise segmentation performance of models from Tab. 1 using the linear probing head. The models are obtained by
sequentially applying the proposed modifications to CrIBo baseline to finally achieve S3PT.

Hyper-parameter PETR

img size (320, 800)
grid size [512, 512, 1]
voxel size [0.2, 0.2, 8]

training epochs 20
batch size 2
learning rate 3e−4
warmup epochs 1
weight decay 0.01
stochastic depth 0.1
gradient clip 35
optimizer Adamw
fp16 ✗
momentum 0.85 → 1.0
global crops 2

PETR head
head hidden dim. 384/784(V iT − S/B)
num query 900
num layers 6
num heads 8
feedforward channels 2048

Table 4. Hyperparameter settings for 3D object detection

decreased number of patch tokens. We evaluate the mod-
els on nuImages semantic segmentation task with a Mask
Transformer head and report the results in Tab. 5. We find
smaller patch sizes to perform better, which is in agreement
with other self-supervised pre-training methods. This is es-
pecially beneficial for dense prediction tasks, where smaller
patch sizes enable more granular predictions.

2.2. Object-wise performance of our contributions

In Fig. 5 of the main paper, we showed the object-wise
performance of sequentially adding our contributions on the
nuImages semantic segmentation task with a Mask Trans-
former head. We show the linear probing performance of
adding our contributions in Fig. 1 above.

2.3. Average distance to different objects in the
dataset

In Fig. 2 can see that on average most of the objects are
between 15-25m away from from the ego vehicle. However,
some objects are far away, which makes them harder to de-

Class mIoU

ViT-Small/14 ViT-Small/16 ViT-Small/32

Car 68.57 68.47 63.59
Truck 36.1 41.52 30.72
Trailer 33.43 30.13 24.83
Bus 42.59 34.9 32.12
Construction Vehicle 26.21 14.55 15.37
Bicycle 12.47 9.33 10.5
Motorcycle 48.18 47.09 42.65
Pedestrian 23.41 22.1 14.75
Traffic Cone 33.54 35.96 25.83
Barrier 65.82 66.82 61.74
Overall 50.97 50.04 46.04

Table 5. Semantic segmentation performance on nuImages (with
Mask Transformer head) of ViT-Small models with different patch
sizes, after pre-training with S3PT on nuScenes dataset

tect. In Tab. 6 we show that adding more and more distant
objects, substantially decrease the performance of PETR.
Nevertheless, We observe that PETR with S3PT (our back-
bone) does not drop as much in performance as other mod-
els which features have not learnt any 3D cues. Additionally
it performs better on long-tailed distribution objects.

2.4. Additional qualitative results

In Fig. 3 we present additioanl results for models used in
hyper parameter search in Table 1 and Figure 5. We can ob-
serve how adding each component to our training schema
influences final segmentation quality results. Note, these
presented models are ViT-S pretrained with only 100 epochs
with Linear Probing, we used this shorter trainig for hyper-
parameter search. Full results require 500 epochs for ViT-S
and 100 for ViT-B.
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Figure 2. Average distance to different objects in the dataset cap at 65 meters

Table 6. Performance on 3D object detection with different backbones, depending on the distance/range. We can see that our method is
more robust towards far away objects (note, we remove construction vehicle class).

Class Names 0-20m 0-30m 0-60m

Dino Cribo Ours Dino Cribo Ours Dino Cribo Ours

car 0.515 0.489 0.555 0.288 0.333 0.396 0.276 0.246 0.299
truck 0.300 0.344 0.368 0.159 0.229 0.281 0.166 0.151 0.195
bus 0.276 0.237 0.427 0.172 0.139 0.312 0.077 0.056 0.135
trailer 0.153 0.103 0.222 0.144 0.082 0.168 0.122 0.053 0.168
pedestrian 0.455 0.401 0.477 0.337 0.269 0.349 0.226 0.205 0.272
motorcycle 0.357 0.331 0.405 0.295 0.210 0.307 0.197 0.196 0.275
bicycle 0.033 0.02 0.014 0.016 0.027 0.028 0.006 0.005 0.022
traffic cone 0.352 0.335 0.370 0.285 0.287 0.297 0.263 0.263 0.285
barrier 0.592 0.452 0.421 0.418 0.465 0.430 0.369 0.343 0.368
mAP 0.337 0.299 0.362 0.261 0.227 0.285 0.189 0.169 0.224
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1: Baseline 2: (1) + Semantic distribution consistent clustering 3: (2) + Object diversity consistent spatial clustering (3) + Depth-guided spatial clustering = S3PT
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Figure 3. Qualitative results obtained by adding each of our proposed components to the baseline CRiBo method. Note that these are
visualizations corresponding to the ablation experiments shown in Tab. 1 and the object-wise performances shown in Fig. 5, where we
pre-trained a ViT-S/16 backbone for only 100 epochs and then trained a linear probing Segmenter head. With a longer pre-training for 500
epochs using S3PT, we demonstrate improved further segmentation quality (see Fig. 6 and Tab. 2).
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