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Figure 1. Comparison between a strategy that mainly samples
foreground superpixels against a strategy that does the same but
additionally samples superpixels in the immediate proximity of
foreground superpixels as well. Values are averaged over 10
training-validation splits. Error bars indicate one standard devi-
ation.

1. A simple experiment to test the efficiency of
context sampling.

While we argue it is important to create context around
objects we want to segment to further improve the segmen-
tation accuracy, we wanted to confirm this behavior with
a simple experiment. After splitting images into several
superpixel patches, each superpixel is assigned the most
prominent pixel label that it contains. We compare two sam-
pling strategies: The first one selects superpixels from fore-
ground classes with high probability and the second one acts
the same as the first one but also selects background super-
pixels located around foreground superpixels (context) with
high probability. The results displayed in Fig. 1 confirm our
hypothesis that labeling the context around objects we want
to segment improves the segmentation accuracy. Indeed the
Active Leaning (AL) curve of foregrounds + context is al-
ways above the one of foregrounds.

2. OVR entropy and OREAL

In this section, we provide further details on OREAL .

2.1. Class Balacing

We go back to the Sec. 3.5 of the main paper and explain
more in detail how OREAL balances the number of items
per class using the OVR entropy. As mentioned in the main
paper: ”For high OVR entropy Hc, the selected elements are
the most uncertain for class c. However, uncertain samples
of class c do not guarantee that they are actually from that
class, potentially resulting in a deviation from the predeter-
mined δc. However, in practice, this discrepancy does not
significantly impact class balance, as any deviation from δc
is compensated for in subsequent iterations.”

Such behavior is illustrated in Fig. 2 through the appli-
cation of OREAL on a toy dataset. The first batch selected
for class 1 contains points from classes 2 and 3. However,
batches selected for classes 2 and 3 contain points from
class 1 as well, which compensated for the missing class-
1 points in the first batch. Once all the points are selected,
an oracle will provide the true label for all points no matter
which class they were selected for.

2.2. Background class

Some datasets feature a background class that aggre-
gates many different visual elements and exhibits high vi-
sual variability. For these datasets, balancing the back-
ground class with the other classes may result in insufficient
coverage of its larger variability. We have observed a posi-
tive effect when oversampling the background class, which
is achieved by simply enforcing nb = 0 when computing
class counts in Alg. 1, where b is the index of the back-
ground class. This results in more selected superpixels δb
for the background class.
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Figure 2. Illustration of our sampling method OREAL on a toy dataset. Starting with class 1, we calculate the OVR entropy of all samples
for this class and select the samples with the highest OVR entropy. We repeat this process for the following classes iteratively. The number
of samples to select per class depends on the number of labeled samples per class, the fewer labels we have for this class the more we select
for it.

Algorithm 1 Required items per class
▷ Solution to Eq. 3 in the main paper

Input: {nc}Cc=1 (current number of labeled items per class
in At), Q (number of items to select for annotation)

Output: {δc}Cc=1 (number of items to select per class)
1: function ITEMSPERCLASS(n, Q)
2: δ ← 0
3: while Q > 0 do
4: c← argmincnc + δc

▷ Get the most underrepresented class c
5: δc ← δc + 1

▷ Increment the queried items for the class c
6: Q← Q− 1 ▷ Decrement the available budget
7: end while
8: return δ
9: end function

2.3. OREAL ablations

. We perform different ablations of our method to mea-
sure the contribution of each component to the final perfor-
mance. Results of the ablation are shown in Table 1 and
Fig. 3. Our OVR entropy and the use of maxagghave the
largest effect on the final performance, while the oversam-
pling of the background classes helps to improve the perfor-
mance by a lesser but not negligible margin.

OREAL meanagg . We use the mean of pixel-wise OVR
entropy scores instead of their maximum to compute super-
pixel OVR entropy.

OREAL Proba×Entropy. Substitute the OVR entropy
for an uncertainty measure obtained as the product of en-
tropy times the predicted probability vector. The goal of
this ablation is to compare the use of OVR entropy and the
vanilla entropy [10] when using class balance.

OREAL δ. We omit the special treatment of the back-
ground class (Sec. 2.2) for the datasets where it is applied

(MONARCH, EndoVis, Pascal VOC).

OREAL 95%. Instead of using the max aggregation, we
take the 95% percentile pixel value to represent the super-
pixel.

3. Experimental Settings
We further detail some aspects of our experiments in this

section.

3.1. Baselines

We provide below a detailed explanation of baselines
presented in the main paper:

Random selects Q random superpixels from Ut at each it-
eration.

BvSB [9] estimates the uncertainty of a pixel using the ra-
tio between the most confident and second most con-
fident class posterior. The uncertainty of a superpixel
is the average of the pixel uncertainty within it. It then
selects the superpixels with the highest uncertainty.

Revisiting SP [3] uses the BvSB uncertainty [9] weighted
by the posterior of the class distributions to promote
class balancing. Class distributions are computed for
each class as the proportion of superpixels predicted
to be that class. Their strategy selects the superpixels
with the highest weighted uncertainty.

PixelBal [8] extends the Revisiting SP method computing
the class distribution for class c as the sum of the pre-
dicted probabilities over all pixels for that class divided
by the total number of pixels. The superpixel score is
computed as the average of the pixel-wise weighted
uncertainties. The weighting requires a hyperparame-
ter ν, which is set to ν = 6 for Cityscapes and ν = 12
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Figure 3. Comparison of different ablation strategies. Values are averaged over 3 training-validation splits for Cityscapes [5], Pascal
VOC [6], and 10 training-validation splits for EndoVis [1], MONARCH [11]. Error bars indicate one standard deviation.

Strategy Cityscapes Pascal VOC MONARCH EndoVis Average Avg /Cityscapes
OREAL 68.0 77.2 69.7 76.2 72.8 74.4

OREAL Mean 67.9 73.6 66.2 74.8 70.6 71.5
OREAL Prob x Ent 66.5 75.2 62.1 75.8 70.0 71.0

OREAL δ . 76.2 65.6 0.760 . 72.6
OREAL 95% 68.5 76.6 . . . .

Table 1. AuALC of all ablations across all datasets averaged over 10 runs (MONARCH, EndoVis) and 3 runs (Cityscapes, Pascal VOC)
on the ResNet50 backbone. Metrics are computed at the end of the 6 active learning steps. Best scores are in bold, and second best are
underlined.

for Pascal VOC, following the authors’ original val-
ues. For EndoVis and MONARCH we set ν = 12. As
above, their strategy selects superpixels with the high-
est weighted uncertainty.

CBAL [2] scores the uncertainty of a sample by calculat-
ing a residual entropy obtained from the standard en-
tropy by subtracting the L1-norm between the pre-
dicted probability vector and the class counts vector δ.
The L1-norm is scaled by a factor λ, which we set to
λ = 2 for all datasets. To adapt the original work from
classification to segmentation, we average the pixel-
wise entropies and probability vectors over all pixels
within each superpixel before computing the residual
entropy scores at the superpixel level. The strategy se-
lects the superpixels with the highest residual entropy.

3.2. Data Augmentations

We apply data augmentation for training our segmenta-
tion model. For MONARCH [11] and EndoVis [1], we use
the same data augmentations as in [11]: MONARCH and
EndoVis images are first resized to 220×220 and 224×224,
respectively. We then take crops with random scale factors
in the range (0.85, 1) and with random aspect ratios in the
range

(
3
4 ,

4
3

)
. All crops are re-scaled back to the initial size

of 220×220 or 224×224, followed by a random horizontal
flipping with a probability of 0.5.

For Cityscapes [5] and Pascal VOC [6], we start by re-
sizing the images to 769× 769 and 513× 513 respectively,
as done in [3]. Next, we upscale the images by adding a
random number of ℓ pixels in both the horizontal and ver-
tical dimensions. The value of ℓ follows a uniform distri-



bution U(0, 300) for Cityscapes and U(0, 200) for Pascal
VOC. After upscaling, we center-crop the images to their
original size of 769 × 769 or 513 × 513 and randomly flip
them horizontally with a probability of 0.5.

3.3. Running Time

The time needed to run our AL pipeline for one seed
is respectively 24, 8, 5, and 6 hours for Cityscapes, Pascal
VOC, MONARCH, and EndoVis. This time corresponds
to a complete AL pipeline, from iterations 0 to 5, per seed.
The time needed to complete the AL pipeline is roughly the
same for all AL methods. We used a single RTX3090Ti
(24GB) for our experiments.

3.4. Reproducibility

For all AL methods, the initial training phase, denoted as
round 0, utilizes the same training dataset to train the seg-
mentation model. An identical test score is observed across
different methods at the conclusion of round 0. Although
setting the seed for random number generators in numpy
and pytorch contributed to reproducibility, it proved insuf-
ficient for ensuring perfect consistency. A crucial modifi-
cation was made to the segmentation model, specifically to
the interpolation layer within DeepLabV3 [4]. By altering
the interpolation mode from bilinear to nearest, we achieved
deterministic computation, ensuring that the model behav-
ior became predictable and reproducible. Since different
AL methods when trained on the same dataset at round 0
achieve the same test score, in the following AL iterations
(1 to 5), the difference observed between AL methods is
only attributable to the labeled set each of them built.

3.5. Weak Labeling of Patches

OREAL was designed under the assumption that super-
pixels only require one click to be annotated. Given a bud-
get of Q clicks, we can thus annotate Q superpixels. How-
ever, when patches are weakly labeled [8], the annotator de-
clares all the classes present in the superpixel and requires
one click per class. Thus, some superpixels, with more than
one class, would require more than one click to be anno-
tated. With a budget Q, we will then have less than Q an-
notated superpixels.

In the case of OREAL, once the list of superpixel num-
bers to be selected per class δ (the numbers in δ sum up
to Q) is computed, starting with the first class, we select all
the required number of superpixels for this class before pro-
ceeding for the next class. When superpixels only require
one click to be annotated, we are sure to select the required
number of superpixels for all classes. However, when su-
perpixels require more than one click, our budget can be
exhausted before we can start selecting superpixels for the
last classes. To resolve this issue, we simply select one su-
perpixel per class and proceed to the next class. This way

we ensure all classes are equally selected. Our selection
procedure stops when the annotation budget is exhausted
and the rate at which this budget decreases will depend on
the number of classes per superpixel we encounter.

3.6. Other details

AL initialization. After validation split, the set of la-
beled frames A1 is initialized with Q random superpixels
throughout the training set. The remaining superpixels are
assigned to the complementary set of unlabeled frames U1.

Background class. We applied the special treatment
for background classes of Sec. 2.2 to the MONARCH, En-
doVis, and Pascal VOC datasets. This treatment was omit-
ted for the void class of Cityscapes because it is not used to
train or evaluate the model.

4. Additional Results
We show in this section complementary results that did

not fit in the main paper due to lack of space.

4.1. Active Learning Curves

Fig. 4 shows the Active Learning curves using the
ResNet101 backbone and Fig. 5 shows the Active Learning
curves using the ViT backbone.

4.2. mIoU improvement using max aggregation

Tab. 2 shows the average mIoU improvement across all
AL iterations from using meanagg to maxagg . On aver-
age, all AL methods benefit from using maxagg instead of
meanagg with the Pascal VOC that has an average mIoU
improvement of 1.54 across all AL methods and backbones.

4.3. Selected superpixels on additional datasets

The main paper showed selected superpixels for the Pas-
cal VOC and EndoVis datasets. Fig. 6 shows additional
superpixels selected for the Cityscapes and MONARCH
datasets. Similar to the selected superpixels on the Pascal
VOC and EndoVis datasets, maxagg has selected more re-
gions at the boundaries between objects.

4.4. Superpixel annotated frames

Fig. 7 shows examples of superpixel annotated frames
using the dominant labeling scheme. For datasets like Pas-
cal VOC, Endovis, and MONARCH the qualitative quality
of the superpixel annotated labels is correct when compared
to the original segmentation masks. This explains the small
performance gap between using the original segmentation
masks and the superpixel annotated masks in Tab. 2 of the
main paper. In the case of Cityscapes which display much
more complex sceneries, the use of superpixel annotation
had a bigger impact on decreasing the segmentation mask
quality. As such, the performance gap in Tab. 2 of the main
paper for Cityscapes becomes bigger.
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Figure 4. Comparison of different sampling strategies. Values are averaged over 3 training-validation splits for Cityscapes [5], Pascal
VOC [6], and 10 training-validation splits for EndoVis [1], MONARCH [11] on the ResNet101 backbone. Error bars indicate one standard
deviation.
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Figure 5. Comparison of different sampling strategies. Values are averaged over 3 training-validation splits for Cityscapes [5], Pascal
VOC [6], and 10 training-validation splits for EndoVis [1], MONARCH [11] on the ViT backbone. Error bars indicate one standard
deviation.



Method Backbone
Datasets MONARCH PASCAL VOC ENDOVIS CITYSCAPES Average

BvSB RN50 1.47 1.36 0.29 -0.19 0.73
revisiting SP RN50 1.67 0.32 -0.18 0.41 0.56
Pixel Bal RN50 -1.31 1.54 0.39 -0.41 0.05
CBAL RN50 -0.31 -0.10 -0.14 0.07 -0.12
OREAL (ours) RN50 1.25 2.18 0.65 0.18 1.07
BvSB RN101 0.48 1.93 0.62 0.35 0.85
revisiting SP RN101 -0.70 1.04 0.05 1.32 0.43
Pixel Bal RN101 -0.10 1.93 0.89 1.64 1.09
CBAL RN101 -0.83 -0.81 -0.16 0.34 -0.36
OREAL (ours) RN101 -0.40 1.82 0.40 -0.06 0.44
BvSB ViT 2.27 3.32 0.70 -0.30 1.50
revisiting SP ViT 1.66 3.20 0.17 -0.10 1.23
Pixel Bal ViT 1.95 3.24 0.71 0.03 1.48
CBAL ViT -0.84 0.75 0.10 -0.46 -0.11
OREAL (ours) ViT -0.64 2.47 0.24 0.66 0.68
Average 0.37 1.54 0.33 0.30 0.64

Table 2. Average mIoU improvement from using meanagg to maxagg across all AL iterations of all strategies across all datasets. A
positive number n means, maxagg has achieved a higher mIoU than meanagg by a margin of n.

4.5. Weak Labeling of Patches

Fig. 8 shows the AL curves for the results presented in
Tab. 4 of the main paper. Finally, Tab. 3 shows the aver-
age mIoU improvement across all AL iterations from us-
ing meanagg to maxagg in the case of the weak labeling
scheme. While the performance gap is marginal on Pas-
cal VOC, it is significant on Cityscapes which benefits from
maxagg .

4.6. Gini Index

To assess how well each AL method balances the differ-
ent classes of a dataset, we calculate the Gini Index [7] for
datasets built by each AL method at the end of the AL itera-
tions and show the results in Tab. 4. The Gini index is equal
to 0 for a list of uniform values and converges to 1 other-
wise. Overall we can see that OREAL built a better class-
balanced dataset than the other AL methods. In the case
of OREAL, using mean aggregation should be more precise
at balancing the dataset than using max aggregation. This is
the case for datasets such as Cityscapes and EndoVis but not
for MONARCH and Pascal VOC. We think this behavior is
caused by the fact that images from MONARCH and Pas-
cal VOC display on average less than 2 classes per image
against 6 to 12 classes for EndoVis and Cityscapes. Since
the task of balancing classes is more difficult when having
multiple classes per image, the difference between a better
and worse balancing metric is more noticeable.

4.7. AuALC improvement per class

Fig. 9 and 10 display the AuALC improvement per
class of OREAL against all baselines for the Cityscapes and
Pascal VOC dataset respectively. Overall, OREAL could
achieve better results than baseline on tail classes, whether
AL methods are using the mean or max aggregation.

4.8. Entropy Map

Fig. 11 shows examples of entropy maps for Pascal VOC
images. For the majority of superpixels located at the border
of objects, we observe that only a few pixels in the proxim-
ity of the object boundary have high entropy. Hence using
max aggregation for those superpixels greatly differs from
using mean aggregation and allows the uncertainty-based
AL methods to select such superpixels.
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Figure 8. Comparison of different sampling strategies when patches are weakly annotated following the method proposed by [8]. Values
are averaged over 3 training-validation splits. Error bars indicate one standard deviation.
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Figure 9. Top 2 graphs show the distribution of Cityscapes classes. The bottom 2 graphs show the relative AuALC improvement of
OREAL vs. baselines for each Cityscapes class (positive indicates OREAL is better). The bottom left graph is for methods using the mean
aggregation and the bottom right is for methods using the max aggregation.
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Figure 10. Top 2 graphs show the distribution of Pascal VOC classes. The bottom 2 graphs show relative AuALC improvement of OREAL
vs. baselines for each Pascal VOC class (positive indicates OREAL is better). The bottom left graph is for methods using the mean
aggregation and the bottom right is for methods using the max aggregation.

Figure 11. Entropy map of 3 images from Pascal VOC. The images are split into superpixels. Pixel with high entropy belongs respectively
to the Dog, Bird, and Cow classes. On the border of these classes, some pixels overflow and belong to superpixels surrounding the classes.
Hence using max aggregation for those border superpixels will emphasize the few pixels that have high entropy located at the border with
the classes.



Methods MONARCH PASCAL VOC CITYSCAPES ENDOVIS
mean - max mean - max mean - max mean - max

Random 0.42 0.67 0.25 0.41
BvSB 0.35 - 0.40 0.61 - 0.63 0.35 - 0.35 0.45 - 0.46

Revisiting SP 0.40 - 0.47 0.63 - 0.66 0.42 - 0.56 0.49 - 0.52
Pixel Bal 0.42 - 0.53 0.60 - 0.72 0.39 - 0.38 0.50 - 0.52

CBAL 0.56 - 0.59 0.65 - 0.66 0.48 - 0.47 0.55 - 0.55
OREAL (ours) 0.56 - 0.59 0.83 - 0.86 0.54 - 0.51 0.57 - 0.56

Table 4. ”1 - Gini Index” of class distribution of datasets built by
different AL methods at the end of AL iterations on the ResNet50
model. The best value between each pair of mean - max aggre-
gation is in bold and the best methods for each column of mean -
max aggregation is underlined.
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