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Overview

In this supplement, we first provide human evaluation to
measure the effectiveness of our Corgi method in compar-
ison to other state-of-the-art approaches (Sec. A), and then
we extend the ablation study to evaluate our method design
(Sec. B). We discussed the limitations and negative impact
in Sec. C. Additional preliminary details for subject-guided
finetuning are provided in Sec. D and details of our cus-
tomized dataset MainCharacter21 are in Sec. E. Additional
video visualizations are included in the supplementary ma-
terial folder.

A. Human Evaluation

We conduct human evaluations for our method against
several baselines. Each pair of generated results was eval-
uated by five participants, including both experts in the
field and individuals without specific background knowl-
edge. Our evaluation set includes 21 pairs of gener-
ated results from Corgi and open-source baseline meth-
ods (FreeNoise [27] and Gen-L-Video [35]), as well as
generated multi-scene video samples from closed-source
methods (three videos from Animate-A-Story [9] and five
videos from VideoDirectGPT [20]), where we directly use
the provided prompts for generation. For comparisons with
FreeNoise [27] and Gen-L-Video [35], we collected 105 re-
sponses (21 video pairs, evaluated by 5 participants), and
for Animate-A-Story [9] and VideoDirectGPT [20], we had
15 (3 video pairs, evaluated by 5 participants) and 25 (5
video pairs, evaluated by 5 participants) responses, respec-
tively. We mixed our generated results with those from
baselines, presenting the participants with story prompts
and corresponding videos generated by these methods in a
randomized order. Participants were prompted to compare
the consistency, faithfulness, diversity, and overall video
quality of the multi-scene videos, asking, e.g., “Which
video is more consistent/faithful/diverse/has higher qual-
ity?” We present the proportion of samples where a higher
number of users preferred our examples as being better in
Tab. 4. The results show that our Corgi method consis-
tently outperforms the baseline methods across key met-
rics. Particularly notable are its high preference scores in
both short-term and long-term consistency, as well as diver-
sity score and overall video quality, with a remarkable 92%
preference over VideoDirectGPT [20] for overall quality.
Although Corgi shows a lower preference in visual faith-
fulness and long-term consistency compared to Animate-
A-Story [9], this may be due to the limited comparison set,
as we had access to only one group of conditioning images

Table 4. Human Preference. We conduct a human evaluation to
compare Corgi against four baseline methods: FreeNoise (F) [27],
Gen-L-Video (G) [35], Animate-A-Story (A) [9], and VideoDi-
rectorGPT (V) [20]. In each paired comparison, our method was
preferred predominantly (over 50%) over the baselines across var-
ious metrics. It is important to note that F and G do not utilize
input images for conditioning, hence visual faithfulness was not
evaluated for these methods. For A due to limited access to only
one set of images used for generating a single video, we report the
visual faithfulness score solely for this specific comparison.

Evaluation (%) Ours > F [27] Ours > G [35] Ours > A [9] Ours > V [20]

Consistency Short 87.62 77.14 66.67 88.00
Long 84.76 94.28 46.67 92.00

Faithfulness Visual – – 40.00 96.00
Textual 63.81 78.09 60.00 84.00

Creativity 63.81 70.48 53.33 84.00
Overall Quality 81.90 84.76 66.67 92.00

from Animate-A-Story [9]. These results show the effec-
tiveness of Corgi in multi-scene video generation.

B. Additional Ablation Study
In the main paper, we provide ablation studies to evaluate

the impact of coverage-based selective caching (Sec. 4.4).
Here we ablate two other method design choices of Corgi:
cached latent conditioning and clip-by-clip sampling.

Cached Latent Conditioning. In our proposed method,
cached latent conditioning plays an important role in con-
trolling the generation process across video clips. To eval-
uate the effectiveness of this design choice, we conduct ab-
lation studies to compare different scenarios:

1. Removing linear weight degradation (as in Eqn. 4) and
maintaining a constant degree of influence across all
frames, thus �k = 0.02 (Constant).

2. Setting the initial weight (�0) too low while still main-
taining the linear weight degradation, reducing the
cached latent influence, which may result in generated
videos that are not visually faithful to the input sub-
jects, �0 = 0.002 (Low).

3. Setting the initial weight (�0) too high while still
maintaining the linear weight degradation, resulting
in cached latents having an excessive influence on the
generated frames, potentially limiting diversity, �0 =
0.5 (High).

4. Using the default setting with linear weight degrada-
tion, �0 = 0.02 (Linear).

As shown in Tab. 5 and Fig. 6, linear weight degrada-
tion enables for a gradual transition, allowing the generated
frames to deviate from the initial frame while still main-
taining visual faithfulness to the input subjects. However,



maintaining a constant degree of influence across all frames,
without the linear weight degradation, leads to an overly
rigid adherence to the cached latents. This affects the natu-
ral transition of the generated videos, resulting in minimal
motion movement throughout the clips. Setting the cached
latents weight too high limits diversity by overly constrain-
ing the content to the initial frame cached latents, while a
too low weight diminishes visual faithfulness and consis-
tency as frames have little influence from cached latents,
deviating from earlier frames, both compromising overall
video consistency. While constant weight outperforms oth-
ers in terms of short-term consistency and visual faithful-
ness as expected, it significantly affected diversity and long-
term consistency.

Table 5. Ablation on Cached Latent Conditioning. We
compare different scenarios: constant weight (Constant), low
weight (Low), high weight (High) and linear weight degradation
(Linear). The results show that our proposed linear weight degra-
dation approach achieves the optimal tradeoff of consistency, faith-
fulness, and diversity.

Consistency (#) Faithfulness (") Diversity (")
Weight Setting Short-term Long-term Visual Textual

Constant 7.42 ± 4.37 17.93 ± 5.02 86.44 ± 8.24 35.94 ± 5.73 38.64 ± 6.74
Low 21.36 ± 6.15 23.48 ± 4.63 75.89 ± 8.06 32.18 ± 7.93 49.27 ± 5.15
High 8.57 ± 5.82 25.14 ± 4.85 54.38 ± 9.53 21.49 ± 3.81 34.96 ± 7.36

Linear (ours) 12.58 ± 5.76 11.63 ± 5.23 85.83 ± 6.38 37.11 ± 4.27 52.84 ± 3.28

Clip-by-clip Sampling. Furthermore, we conduct an abla-
tion study to evaluate the impact of the self-attention op-
eration with cached latents concatenation in clip-by-clip
sampling. Keeping the same experiment settings for other
parts, we evaluate w/ concatenation (Eqn. 5) and w/o con-
catenation (Eqn. 7), the results are in Tab. 6. Our abla-
tion study shows that incorporating the proposed cached la-
tent concatenation for self-attention improves performance.
When the cached latent concatenation was omitted for self-
attention, the ability to preserve the visual appearance of
the input subjects was largely weakened and it frequently
results in jittery motion and object distortions (Fig. 7).
Table 6. Ablation on Clip-by-Clip Sampling. We conduct an
ablation study on self-attention concatenation during clip-by-clip
sampling, comparing scenarios with and without cached latent
concatenation. The results show that with concatenation improves
video quality and consistency. The 3denotes using concatenation.

Consistency (#) Faithfulness (") Diversity (")
Concatenation Short-term Long-term Visual Textual

3 12.58 ± 5.76 11.63 ± 5.23 85.83 ± 6.38 37.11 ± 4.27 52.84 ± 3.28
14.31 ± 6.58 12.95 ± 4.17 74.23 ± 7.82 40.03 ± 5.22 50.17 ± 5.39

C. Limitations
While our method offers promising results in multi-

scene video generation, it still has its limitations. For ex-
ample, we observed that when novel subjects in the story
prompts are not specified, e.g., in Fig. 9 (A), with only the

corgi images as input, the generated results will merge the
features of multiple subjects (corgi and squirrel). Another
failure case we observed is if in the input images, there is al-
ways some part attached to the target subject (e.g., in Fig. 9
(B), the tree branch is attached to the owl), then this fea-
ture will be propagated via the cached latents to the final
generated videos. Additionally, our diversity metric does
not capture whether this diversity aligns with the intended
story. As in some cases, it could be preferable for subse-
quent clips to have similar visual content. Quantifying “de-
sirable” or “reasonable” diversity is subjective and context-
dependent. An interactive UI is ideal but beyond our scope.
Future work e.g. adaptive weighting or human-in-the-loop
approaches for user-selected intermediate images could fur-
ther improve quality. These challenges open up new oppor-
tunities for future research exploration.

Negative Impact. While our method aims to enable multi-
scene video generation, there is a risk that it could be ex-
ploited to create misleading or inappropriate content, which
underscores the need for robust filters and stricter regulatory
frameworks to prevent misuse in the future.

D. Finetuning Preliminary
Here we provide additional preliminary details for the

subject-guided finetuning [30]. Diffusion models are a type
of probabilistic generative model designed to learn data dis-
tributions. They achieve this by progressively denoising a
sample initially drawn from a Gaussian distribution, effec-
tively reducing its noise through each step of the process.
As denoted in Sec. 3.2, with pretrained T2I diffusion model
x̂✓ and conditioning vector c = ⌧✓(p), and initial noise map
✏ drawn from a normal distribution N (0, I), as well as the
ground-truth image x, the original training objective is:

Ex,c,✏,t

⇥
wtkx̂✓(↵tx+ �t✏, c)� xk22

⇤
, (8)

↵t,�t, wt control the noise schedule and sample quality.
We follow Dreambooth [30] and leverage the class-specific
prior preservation loss during finetuning:

Ex,c,✏,✏0,t[wt0kx̂✓(↵t0xpr + �t0✏
0, cpr)� xprk22], (9)

where xpr = x̂(zt1 , cpr) from the pretrained and frozen
T2I model. zt1 ⇠ N (0, I) is random initial noise and
cpr := ⌧✓(f(”a [name of class]”)) is a conditioning vector.
The loss of T2I finetuning is the combination of the both
training objectives above:

Ex,c,✏,✏0,t[wtkx̂✓(↵tx+ �t✏, c)� xk22+
�wt0kx̂✓(↵t0xpr + �t0✏

0, cpr)� xprk22].
(10)



Figure 6. Ablation study on Cached Latent Conditioning. We examine different weight settings for cached latent conditioning: constant
weight across all frames (Constant), low weight (Low), high weight (High), linear weight degradation (Linear). The Linear approach
achieves the best balance between consistency, faithfulness, and diversity. Constant leads to overly rigid adherence and the videos have
minimum motion and appear similar to static images rather than dynamic video sequences, High limits diversity and the generated results
look unrealistic, and Low diminishes visual faithfulness to input subjects.

Figure 7. Ablation study on Clip-by-Clip Sampling. We compare the impact of cached latent conditioning on the generated videos. The
model without cached latent (w/o concatenation) suffers from jittery motion and object distortions, while the model with cached latent
(w/ concatenation) maintains visual appearance of input subjects and generates more stable and high-quality videos. This demonstrates
the effectiveness of the proposed clip-by-clip sampling approach in preserving visual consistency and faithfulness to the input subjects.

E. MainCharacter21

In our study, we introduce the MainCharacter21
dataset, including 21 unique subjects, with each subject
represented by 3 to 5 images. Fig. 8 shows three im-
ages of each subject. We show a list of sample instruction

prompts (Tab. 7) used to generate story prompts, along with
three example story prompts (Tab. 8, 9, 10) created by
MLLM [22, 23] given instruction prompts. It is important
to note that, as we use rare tokens (e.g. V*) plus subjects
during the T2I finetuning stage, we similarly added the rare
tokens to the story prompts before subjects and pronouns in



Figure 8. MainCharacter21. This figure illustrates our dataset MainCharacter21, including images from 21 distinct subjects, with three
sample images per subject.

Figure 9. Limitations. Feature disentanglement for image-
conditioned video generation still remains challenging. As shown
in (A), the features of a corgi and a squirrel are mistakenly com-
bined when the input images only includes the corgi. Additionally,
in (B), the base T2I model’s limitations in contextual understand-
ing and a tendency to overfit to features that appear across all im-
ages used for fine-tuning result in incorrect feature attachment.

the prompts were adjusted accordingly during inference.

Table 7. Sample Instruction Prompts

Inspired by the photo, write a story for a children’s
book, consisting of 7 sentences.
Write a 9-sentence tale about two individuals reuniting
under surprising circumstances using the image as
inspiration.
Narrate a 4-sentence adventure about discovering
something invaluable, drawing inspiration from the
image.
Craft a 5-sentence story about unexpected turns in life,
drawing from the image’s atmosphere.
Using the image as a foundation, write a 9-sentence tale
about a life lesson.



Table 8. Sample Story Prompts 1

Sidney the squirrel scurried around the park, his little
heart full of glee.
He found a perfect acorn, shiny and brown, right for
tea.
His fluffy tail flickered as he nibbled away, happy as
can be.
He played peek-a-boo with the children, who laughed
merrily.
Sidney had a secret stash, hidden under the oak tree.
He’d jump from branch to branch, the leaves whispering,
"Catch me!"
His friends, the birds, would sing as he danced.
When it rained, he snuggle in his cozy warm and dry.
And as the stars appeared, Sidney would dream of
tomorrow’s joyous spree.

Table 9. Sample Story Prompts 2

Holly the hedgehog wore a crown of crystal spikes, each
one twinkling like a little star.
She loved to explore the garden, her crown catching the
light and casting rainbows everywhere.
She snuffled through the leaves, her tiny feet padding
softly on the earth.
Every day, Holly would visit her friend, another
hedgehog who lived in the oak tree.
At lunch, Holly shared her berries with the ants, who
admired her colorful spikes.
In the evening, Holly would sit and watch the stars, her
crown shimmering along with them.
When it was time for a nap, she curl up in her cozy bed.

Table 10. Sample Story Prompts 3

Fiona the flamingo stood gracefully on her legs, her
feathers a fiery orange against the setting sun.
She loved to watch the ripples in the water, each one
telling a story.
One by one, her friends flew in, splashing softly in the
shallow waters.
The water glimmered, turning gold and pink as the sun
dipped lower.
Fiona and her friend danced in the twilight, creating a
whirlpool of colors with their wings.
As the stars began to twinkle, she settled down,
nestling together in the warm sand.


