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A. More Details of Vigor

This section provides more details regarding model im-
plementations and experimental setups. In particular, we
first demonstrate the pseudocode of order-aware sample
synthesis for pre-training in Sec. 3.4 and the complete train-
ing pipeline in Sec. 3.5. Then, we elaborate on the hyper-
parameters of Vigor and implementations of baselines for
experiments in Sec. 4.

A.1. Pre-Training Sample Synthesis and Training
Pipeline

This section provides the pseudocode of synthesizing
order-aware samples for Vigor’s pre-training in Sec. 3.4 and
the complete training pipeline in Sec. 3.5 in our main pa-
per, respectively. Specifically, Algorithm A1 demonstrates
the pipeline to synthesize an order-aware pre-training sam-
ple given object proposals P and predicted object labels
L. On the other hand, Algorithm A2 illustrates the com-
plete pipeline to train Vigor with synthesized samples and
natural-description samples, such as NR3D and ScanRefer.

A.2. Implementation and Details and Experimental
Settings

For both datasets, we use PyTorch [14] library to imple-
ment Vigor. We train Vigor using Adam [11] optimizer with
a single NVIDIA Tesla V100 GPU.

To conduct batch-wise training with a fixed number of
Object-Referring blocks, we set the length of referential or-
der B to be 4, i.e., we trim the original referential order
from the front if its length exceeds 4 and pad it if its length
is lower than 4. We adopt BERT [4] as the text encoder
to extract T and Pointnet++ [15] as the visual encoder to
acquire F1. We sample I=1024 points for each object pro-
posal in the scene. Object proposal number K and token
number |D| are sample-dependent. Object feature dimen-
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Algorithm A1 Order-Aware Sample synthesis for Vigor
Pre-training

Input: P and L
Hyperparameters: B
Output: Daug , Oaug

1:B , and paug1:B

1: randomly sample and arrange {laug1 , · · · , laugB } from L.
2: extract class names of {laug1 , · · · , laugB } as Oaug

1:B =
{Oaug

1 , . . . , Oaug
B }.

3: Daug = “There is a {Oaug
1 } in the room, find the

{Oaug
2 } farthest to it, and then find the {Oaug

3 } farthest
to that {Oaug

2 }, {. . .}, finally you can see the {Oaug
B }

farthest to that {Oaug
B−1}.”

4: get paug1 by randomly removing objects in P with class
of Oaug

1 until only one of them is left.
5: initialize the anchor/target objects set as {paug1 }.
6: for i = 2, 3, . . . , B do
7: for all objects in P with the class of Oaug

i , find the
one farthest from paugi−1

to be paugi .
8: append paugi to {paug1 , . . . , paugi−1}.
9: end for

10: paug1:B ← {p
aug
1 , · · · , paugB }

11: return Daug , Oaug
1:B , and paug1:B

sion di for i-th Object-Referring block is set to 768, align-
ing with BERT’s 768 dimension, to conduct cross-attention.

A.2.1 NR3D

For NR3D, we use pre-trained Pointnet++ to classify all
object proposals as object labels L following BUTD-
DETR [9]. We warm-up Vigor for 15k steps on ScanNet
scene point cloud and our augmented samples in Sec. 3.4
and continue on real-world data pairs in NR3D (around
1.2k, 12k, and 120k steps for 1%, 10%, and 100% data,
respectively) using a batch size of 24. With one NVIDIA
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Algorithm A2 Vigor Training Pipeline
Input: scene-description paired training samples

{{C1, D1}, {C2, D2}, . . .}
Hyperparameters: pre-training step Sp, official

training step So, and B

1: initialize Vigor’s model weights ϕ.
2: Lpre ← {Ltext,Lmask,Lref ,Lcrd}
3: for i = 2, 3, . . . , Sp do
4: sample a scene point cloud C from paired training

samples.
5: acquire P and L of C.
6: use A1 with {P,L,B} as inputs to synthesize
{Daug, Oaug

1:B , paug1:B}.
7: use {P,L,Daug, Oaug

1:B , paug1:B} to update ϕ with
Lpre.

8: end for
9: Ltrain ← {Ltext,Lmask,Lref}

10: for i = 2, 3, . . . , So do
11: sample a data point {C,D} in the training samples
12: acquire P and L of C.
13: apply LLM to acquire O1:B .
14: use {P,L,D,O1:B} to update ϕ with Ltrain.
15: end for

Tesla V100 GPU, the warm-up takes around 3 hours and
the NR3D real-world data training takes around 24 hours
when training on 100% data.

A.2.2 SR3D

We present SR3D’s results in App. B.2. SR3D contains
65844 training samples and 17726 testing samples. Each
sample’s description is synthesized by simple spatial re-
lations, such as farthest and beside with simple sentence
structures like “the monitor that is farthest from the printer.”
We conduct the object classification and warm-up process
as in NR3D and continue on SR3D data pairs, with around
2.7k and 27k training steps for 1% and 100% data using
batch size 24. SR3D 100% data training takes around 48
hours with one NVIDIA Tesla V100 GPU.

A.2.3 ScanRefer

For ScanRefer, following M3DRef-CLIP [20], we use
PointGroup [10] to classify object proposals. We do not
apply the warm-up due to noisy and imperfect object pro-
posals and labels under ScanRefer’s setting. The batch size
is 32, and the GPU is a single NVIDIA Tesla V100 GPU.
Training on 100% data requires around 60 hours.

Figure S1. Quantitative results on NR3D We can see that when
the amount of data is relatively many (above 30%), our Vigor is
comparable to MVT+CoT3DRef [2]. However, as the amount of
data reduces, our Vigor performs better over MVT-CoT3DRef.

A.2.4 Baselines

For baselines [1–3, 6, 8, 9, 13, 17, 18, 20, 21] on NR3D and
ScanRefer in Table 1, 2, and 3, we utilize their official
public implementations with different amounts of available
training samples and the full testing set to evaluate their
low-resource performance. For the full-data (100%) sce-
nario, we acquire their performance either on the official
leaderboard of NR3D/ScanRefer or their published papers.

B. Additional Quantitative Results
B.1. More Results on NR3D

In Sec. 4, we have shown comparisons between Vigor
and several state-of-the-arts under data efficient scenarios
(1% ∼ 10% of data). Here, we provide a comparison be-
tween Vigor and MVT+CoT3DRef [2] from 1% to 100% of
NR3D data in Fig. S1, where Vigor outperforms CoT3DRef
with a noticeable margin when the amount of data is limited
and is comparable to CoT3DRef when the data amount is
over 30%, showing that our Vigor is suitable under differ-
ent settings.

Table S1 further displays the detailed performance on
different official subsets of NR3D. Among the subsets, the
Hard subset contains samples with more than 2 distractors,
where a distractor is an object having the same class name
as the target object, and the Easy subset is the contrary.
View-dependent samples contain relations where rotating
the point cloud scene will affect the referred ground-truth
target object (e.g., left and right), and View-independent
samples are contrary. Vigor accentuates itself with decent
capabilities on different subsets, consistently followed by
the two variants of CoT3DRef [2] that also feature the con-



Table S1. Grounding accuracy on the official NR3D subsets [1]. For implementation and comparison purposes, only the setting of 10%
of training data is considered.

Method Hard Easy View-Dep. View-Indep. Overall

Referit3D [1] 19.5 27.3 21.2 24.2 23.3
TransRefer3D [6] 21.6 29.9 22.9 27.0 25.7
SAT [18] 22.5 27.6 21.7 26.6 25.0
BUTD-DETR [9] 25.9 41.9 29.1 34.8 33.3
MVT [8] 22.9 30.3 25.4 27.1 26.5
MVT + CoT3DRef [2] 32.7 43.2 34.0 39.8 37.9
ViL3DRel + CoT3DRef [2] 32.4 44.7 33.4 40.9 38.4
Vigor (Ours) 39.1 53.3 45.3 46.4 46.0

Table S2. Data Efficient Grounding accuracy (%) on SR3D.
We show the results trained with 1% and 100% of training data.

Method Labeled Training Data
1% 100%

BUTD-DETR [9] 36.5 67.0
MVT [8] 22.2 64.5
NS3D [7] 52.4 62.7
MVT + CoT3DRef [2] 26.9 73.2
Vigor (Ours) 51.3 67.1

cept of referential order for 3D visual grounding.

B.2. More Results on SR3D

Table S2 shows the quantitative comparisons on the
SR3D dataset against BUTD-DETR, MVT, CoT3DRef and
NS3D [7], with the settings of using 1% and 100% of train-
ing examples, respectively. From this table, we can see that
although NS3D achieves the best performance when using
only 1% of training data due to its structured decomposition
of the input description into nested logical expressions, its
performance saturates when using more data for training.
As for CoT3DRef, its design of applying rule-based match-
ing of anchor/target objects as additional guidance for the
model is effective on SR3D when using a large amount of
data, where the relations are much simpler than NR3D or
ScanRefer, but its performance on 1% of data is subopti-
mal. On the contrary, our Vigor achieves comparable re-
sults in both settings, showing that our design is suitable for
various amounts of training pairs.

C. Ablation Studies on Training Objectives
This section performs the ablation study on several train-

ing objectives used for Vigor mentioned in Sec. 3. In par-
ticular, we investigate the influence of Lmask, Lcrd, and
Ltext for low-resource (1% training data) and full-resource
(100% training data) scenarios, as shown in Table S3. Note
that we only conduct target object classification on the text

feature T when deactivating Ltext, and apply classification
on both anchor and target objects when adopting Ltext, as
mentioned in Sec. 3.3. Also, for all experiments in Table S3,
the pre-training with synthetic data in Sec. 3.4 is applied for
fair comparison. In summary, Lmask, Lcrd, and Ltext all
impose positive effects on models’ performances under the
two settings, verifying Vigor’s design in Sec. 3.

D. Model Performance Under Different Order
Length

In this section, we analyze the effectiveness of padded
order length B of O1:B (and also the number of Referring
Blocks) in Fig. S2, which illustrates the performances with
different B using 1% and 100% training data in Fig. S2a.
We also show the statistics of the original order length gen-
erated by our two-stage referential ordering in Fig. S2b. We
observe that although performances gradually increase with
larger B (i.e., considering more potential anchor objects ap-
peared in D achieves better accuracy), the performance gain
saturates at B = 4. This can be explained by looking at
Fig. S2b, which shows that only a very small amount of
data exceeds an order length of 4 in both training and test-
ing pairs. This suggests that our selection of B = 4 is rea-
sonable, optimally balancing computational efficiency with
prediction accuracy.

We additionally explore Vigor’s performance gain for
descriptions with different order lengths compared with
MVT [8] to show the effectiveness of our design of pro-
gressive location to the target object. We split the original
NR3D testing set into subsets that possess order lengths of
1, 2&3, and 4&5. An order length of 1 (1092 samples in
the testing set) means that only the target object is men-
tioned in the description. Samples with an order length of 2
or 3 (6184 samples in the
testing set) have 1 or 2 anchor objects mentioned other than
the target object. Similarly, samples with an order length
of 4 or 5 (209 samples in the testing set) have 3 or 4 anchor
objects mentioned other than the target object. A longer ref-
erential order may generally denote a longer and more com-



Table S3. Ablation studies on training objectives. Note that for all ablation settings, the proposed order-aware pre-training in Sec. 3.4 is
applied for fair comparison.

Lmask Lcrd Ltext Lref 1% 100%

✓ 31.1 54.2
✓ ✓ 31.6 54.8

✓ ✓ ✓ 32.4 56.0
✓ ✓ ✓ ✓ 33.5 59.7

52

54

56

58

60

54.2

57.9

59.6 59.7
59.0 59.3

1 2 3 4 5 6

30

32

34

30.1

32.2 32.6
33.5 33.2 32.9

Padded Order Length B

Gr
ou

nd
in

g 
Ac

cu
ra

cy
 (%

)

1% training data
100% training data

(a) Grounding accuracy with different maximum (padded) refer-
ential order length B. Note that B is equal to and denoted as the
number of Object-Referring blocks.
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(b) Statistics of the referential order length in NR3D. A longer ref-
erential order denotes a more complex referring process for grounding.

Figure S2. (a) Grounding accuracies with varying Object-Referring block numbers B and (b) statistics of referential order length
of NR3D. It can be seen that the model performance saturates at B=4, matching length statistics of NR3D.

plicated description. As shown in Table S4, though only
a 2.2% performance gain is obtained for target-only sam-
ples, Vigor is more advantageous when dealing with lengthy
descriptions, with 5.3% performance gain achieved for de-
scriptions with order length of 4 or 5.

E. Visualization of Responses in Each Refer-
ring Block

To show that our Vigor indeed progressively locates the
target object following the derived referential order, we vi-
sualize the feature response of F1:(B+1) (B = 4) in Fig. S3.
The blue bounding box indicates the ground-truth target ob-
ject, and we color the object proposal according to the re-
sponse of their corresponding features in F1:(B+1), where
a brighter color represents a higher response. We can see
that the responses to object proposals are originally clut-
tered. As our referential blocks are applied, the response of
anchor/target objects becomes larger and finally locates the
ideal target object in the last feature F5.

F. Details and Prefix Prompt Examples of Two-
Stage ICL for Deriving Referential Order

To have Object-Referring blocks {R1, · · · , RB} in
Sec. 3 to locate the target object properly, it is desirable
to extract a proper referential order O1:B from the input
description D. With such a referring path constructed, vi-
sual features of the associated objects can be updated for
grounding purposes. This is inspired by the idea of Chain-
of-Thoughts [12,16] in LLM, as noted in CoT3DRef [2]. To
achieve such a parsing task, we apply GPT-3.5-Turbo [19]
as the description parser using in-context learning (ICL) [5],
as depicted in Fig. S4.

However, it is not trivial to have LLM output a referen-
tial order from D due to lengthy and noisy descriptions. For
example, for an input description “Look at the king-size bed
in the room next to a green chair, Find the pillow on the bed.
Not the pillow on the sofa beside the chair.”, one would ex-
pect first to find the green chair then the king-size bed next
to the chair, and finally, the pillow on the bed. Therefore,
the ideal referential order is {“chair”, “bed”, “pillow”}.
In the above example, the sentence “Not the pillow on the
sofa which is also beside the chair.” is redundant since one



Table S4. Grounding accuracy on NR3D subsets regarding different parsed referential order lengths. Note that referential order
length = 1 means only the target object is mentioned in the description. The improvement of Vigor over MVT [8] grows as the parsed
order length increases.

Method Order Length overall1 2&3 4&5

MVT [8] 59.4 55.0 46.7 55.1

Vigor (Ours)
61.6

(+2.2)
59.6

(+4.6)
52.0

(+5.3)
59.7

(+4.6)

 Description: This trashcan is by a large screen on the wall.
 Referential Order: wall -> screen -> trash can

Text

Figure S3. Visualization of Responses in Each Referring Block. An example in NR3D is shown in this figure. We color each object
proposal according to their feature response in F1:(B+1), where a larger response with a brighter color. Note that the blue bounding box
represents the ground truth target object. We can see that our Vigor progressively locates the target object by considering the referential
order by first focusing on the wall then the screen and finally the trash can.

can find the correct target object without this information.
If we apply the LLM directly to the original description,
the model may be misled by this redundant information and
generate a referential order containing the object “sofa”.

To tackle the above problem, we conduct a two-stage in-
context learning (ICL) scheme to remove redundant infor-

mation in D before producing O1:B , as depicted in Fig. S4.

With the given target object OB , we predict a summa-
rized description D

′
to remove redundant information in D

in the first stage. Then, the entire referential order O1:B

given D
′

and OB is produced in the second stage. For each
stage of our ICL, 10 examples are provided as demonstra-



"Look at the king-
size bed in the room next

to a green chair. Find
the pillow on the bed. Not

the pillow on the sofa
which is also beside the

chair."

"Find the pillow on the
king-size bed in the

room next to a green
chair."

Find the anchor objects
and form a referential

order based on the
target object and

summarized utterance.

Find the target object
and summarized

utterance.

"chair->bed->pillow"

LLM LLM

"pillow"

Figure S4. Referential order generation via LLM. A two-stage
ICL is deployed to remove redundant information from D, form-
ing a descriptive order O1:B for locating the target object OB .

tions of the input prompts for LLM to predict O1:B . Due to
page limitations, demonstration examples and the complete
prefix prompts are presented in the supplementary materi-
als. With O1:B obtained, the order-aware object referring
process can be processed accordingly, as we detail next.

We now list the complete prompts of our two-stage ICL
using GPT-3.5-Turbo [19] for referential order generation.
Also, we exhibit parsing results of 4 samples in the NR3D
testing set and compare them with CoT3DRef [2] that also
establishes the extraction and usage of referential order.

F.1. Prefix Prompt of First-Stage ICL

The first-stage prompt is used to acquire the summarized
description D

′
and target object OB of the original descrip-

tion. Our first-stage prompt is as follows:
I have some descriptions, each describing a specific

target object in a room. However, they may have some
redundant clauses or words. Your task is to summarize
them into a shorter description. Also, tell me what the
target object.
Below are 10 examples:
description 1: Assume you are facing the door in the room.
Find the larger cabinet to its left.
summarized description 1: When facing the door, the
cabinet on the right of it.
target object 1: cabinet

description 2: The water bottle that is above the easy
chair. NOT the smaller water bottle that is above the
orange table.
summarized description 2: The water bottle that is above
the easy chair.
target object 2: water bottle

description 3: In the bedroom, you will see a sheer

curtain. Beside the curtain is the steel window you need to
find.
summarized description 3: The steel window beside a
sheer curtain.
target object 3: window

description 4: Please find the towel hanging on the
wall in the bathroom with the other three towels. You
should find the one nearest to the door. Or say it is on the
door’s right side.
summarized description 4: The towel on the wall nearest
to the door.
target object 4: towel

description 5: Between a pencil and a desk lamp on
the desk is the backpack you need to find.
summarized description 5: The backpack between a pencil
and a desk lamp on the desk.
target object 5: backpack

description 6: In the living room we have three book-
shelves. Choose the bookshelf to the right of the clock
facing a cabinet.
summarized description 6: The bookshelf to the right of
the clock faces a cabinet.
target object 6: bookshelf

description 7: The person wearing a white T-shirt,
not the man who is also sitting on the bed but with a jacket.
summarized description 7: The person wearing a white
T-shirt on a bed.
target object 7: person

description 8: The purple pillow on the right side of
the bed when facing it. Not the one on the left side and the
one in the middle of the bed.
summarized description 8: The purple pillow on the right
side of the bed when facing it.
target object 8: pillow

description 9: The brown door at the end of the liv-
ing room, next to the trash cans, which are full of garbage.
summarized description 9: The brown door next to the full
trash can.
target object 9: door

description 10: The shoes that are placed in the mid-
dle of five shoes near the door in the room.
summarized description 10: The middle shoes near the
door.
target object 10: shoes
Now for the description [DESCRIPTION], give me the
summarized description and the target object. Your answer



must be in the form ”summarized description: target
object:”

F.2. Prefix Prompt of Second-Stage ICL

The second-stage prompt is used to acquire the referen-
tial order O1:B based on the target object OB and the sum-
marized description D′. The complete prompt is as follows:

I have some descriptions, each describing a specific
target object with some supporting anchor objects helping
the localization. We can find the specific target object by
tracing the referential order of anchor objects step by step.
Your task is to provide a correct referential order. Also, tell
me what the mentioned anchor objects.
Below are 10 examples:
description 1: The water bottle that is above the easy chair.
target object 1: water bottle
anchor objects 1: easy chair
referential order 1: easy chair→water bottle

description 2: The steel window beside a sheer cur-
tain.
target object 2: window
anchor objects 2: curtain
referential order 2: curtain→window

description 3: The trash can that is on the right of
the king-size bed.
target object 3: trash can
anchor objects 3: bed
referential order 3: bed→trash can

description 4: The backpack between a pencil and a
desk lamp. They are all on a wooden desk.
target object 4: backpack
anchor objects 4: pencil, desk lamp, desk
referential order 4: desk→pencil→desk lamp→backpack

description 5: The cabinet on the right of the door.
target object 5: cabinet
anchor objects 5: door
referential order 5: door→cabinet

description 6: The bookshelf to the right of the clock
facing a cabinet.
target object 6: bookshelf
anchor objects 6: clock, cabinet
referential order 6: cabinet→clock→bookshelf

description 7: The person wearing a white T-shirt on
a bed.
target object 7: person

anchor objects 7: bed
referential order 7: bed→person

description 8: The purple pillow on the right side of
the bed when facing it.
target object 8: pillow
anchor objects 8: bed
referential order 8: bed→pillow

description 9: The brown door next to the full trash
can.
target object 9: door
anchor objects 9: trash can
referential order 9: trash can→door

description 10: Please find the towel hanging on the
wall in the bathroom with the other three towels. You
should find the one nearest to the door. Or say it is on the
door’s right side.
target object 10: towel
anchor objects 10: wall, door
referential order 10: wall→door→towel

Now for the description: [DESCRIPTION], give me the
anchor objects and the referential order. Your answer must
be in the form ”referential order, anchor objects:. ”

F.3. Examples of Derived Referential Order

To show that our two-stage ICL produces reasonable ref-
erential orders, we provide examples and comparisons be-
tween ours and CoT3DRef [2]’s parsing results. In particu-
lar, we leverage CoT3DRef’s released prompt to query the
GPT-3.5-Turbo. We display 4 examples in Table S5, where
CoT3DRef misses an anchor object “bed” in the third ex-
ample and includes a redundant object “shelves” as an an-
chor object in the fourth example, while our Vigor produces
proper results in both cases. This shows the effectiveness of
the two-stage ICL strategy.

G. Limitations and Social Impact
G.1. Limitations

G.1.1 LLM-parsed Referential Order

Since Vigor utilizes LLMs to generate the referential order
from the input description, despite of our introduced pre-
training strategy to warm the training process, the correct-
ness of the extracted referential order would affect the train-
ing and the performance of Vigor. For example, Table S6
shows the accuracy on the SR3D dataset and NR3D dataset
that our GPT-3.5-Turbo-parsed referential orders correctly
place the target object at the last position. We can see that
for the NR3D dataset, where the relations in the descrip-
tions are much more complicated, the accuracy of the iden-



Table S5. Examples of LLM-parsed referential order from CoT3DRef [2] and Vigor. Note that the blue text represents the ideal
anchor/target objects, and the red text represents the redundant object that should not appear in the referential order. We can see that MVT
misses one anchor object in the third example and includes a redundant object in the fourth example, while Vigor predicts proper order for
both cases.

Description CoT3DRef [2] Vigor (Ours)

The pillow closest to the foot of
the bed. bed→ pillow bed→ pillow

Facing the bed, it’s the large white
pillow on the right. The second
one from the headboard.

bed→ headboard
→ pillow

bed→ headboard
→ pillow

The front pillow on the bed with
the laptop. bed→ pillow laptop→ bed

→ pillow

The window near the table, not
the one near the shelves.

table→ shelves
→ window table→ window

Table S6. Our adopted GPT-3.5-Turbo’s zero-shot accuracy (%) on identifying the class name of the target object in the referring
descriptions. Note that since the ground-truth labels and orders of the anchor objects are not available, we are only allowed to check if the
target object is correctly placed at the last position in the parsed referential order as an indirect verification of the reliability of the orders.

Method NR3D SR3D
train test train test

GPT-3.5-Turbo 86.9 89.1 96.4 96.1

tification of the target objects is 86.9% and 89.1% for the
training and testing sets, respectively. The gap between this
accuracy and an absolutely reliable prediction (i.e., 100%
accuracy), though small, would still affect the training sta-
bility and testing accuracy of our visual grounding pipeline.
As a result, better usage of the LLM to produce perfect ref-
erential order is one of the future research directions to pur-
sue.

G.1.2 Order Length Decision

As detailed in Sec. A, we set the length B of referential
order (as well as the number of referring blocks) as 4 to
conduct batch-wise training. Although we have shown that
our choice of B is reasonable for balancing computational
efficiency and prediction accuracy in Sec. D by conduct-
ing proper experiments on NR3D, this choice appears to be
dataset-specific. We leave this as a future direction to de-
velop a more flexible architecture to be able to dynamically
adjust B according to the LLM-parsed referential order for
each sample during training and testing.

G.2. Broader Impact

G.2.1 Applications of 3D visual grounding

Although the experiments in this paper are conducted on
indoor datasets only, the task of 3D visual grounding is

not restricted to indoor scenes. For the autonomous driv-
ing industry, 3D visual grounding could also be an impor-
tant topic to study along with 3D object detection. As our
approach is designed to promote the data efficiency of 3D
visual grounding tasks, we look forward to seeing future
works that consider the concept of our Vigor and apply it to
autonomous driving systems since it is hard to collect enor-
mous amounts of data for autonomous driving.

G.2.2 Potential Negative Impacts

Although the experiments in this paper show that our Vigor
outperforms current SOTAs in data-efficient scenarios, one
must make sure that Vigor is well-validated before apply-
ing it to a new data domain. Without properly transfer-
ring Vigor’s grounding ability to the corresponding do-
main, the performance could be non-ideal, introducing po-
tential safety risks, especially in critical applications like
autonomous driving.
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