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Appendix
The appendix is organized as follows. Section A summa-

rizes the implementation details for the model architecture
and training. Section B provides the parameter analysis of the
proposed prompt synthesis compared to the CMM [2] as men-
tioned in section 5.1. Section C and section D provide more
ablations to complement the ablations presented in the main
paper, and section E presents the basis prompt visualization.

A. Implementation Details
Model architecture. The transformer architectures are
inherited from LaViLa [5], the Ego-VFM we adopted. The
text encoder ϕtxt is a 12-layer (L = 12) Transformer with
dtxt = 512 and context length as 77. We prompt the text
encoder with Mv = 8 for all methods. The video encoder
ϕvid is a 12-layer (L = 12) TimeSformer [1], where each
video frame is decomposed into 14×14 patches (Np=196)
and dvid = 768. All the models are trained with 16 frames
per video (T = 16) unless explicitly noted (e.g. Table 4).
We prompt our method and the baselines with the same
amount of prompts to ensure fair comparisons. For VPT
and VoP, since the visual prompts are not frame-specific,
we prompt the video encoder with Mv =128 prompts. For
VoPF+C and Ego-VPA, we prompt each frame with Mv =8
frame-specific prompts so that the total number of prompts
is MvT = 8×16 = 128. Note that we only prompt for the
spatial attention blocks in the TimeSformer, as mentioned in
section 4, and the dimension of all the prompts is equal to the
feature dimension of the encoder. For the prompt basis F , we
set df =512 and B=10 as ablated in Figure 8 and Figure 5a.
These prompts are randomly initialized. We set the intra/inter-
frame attention boundary (i.e. K) as 8 for both VoPF+C and
Ego-VPA as it produces the best results (See Figure 5c).
Training. We implement all the codes with PyTorch atop
the codebase of LaViLa [5]. As mentioned in section 6.1, all
the experiments are trained with 8 NVIDIA Titan Xp GPUs
with a batch size of 4 per GPU. According to our preliminary
experiments in section D, we train all the prompt-tuning

Table 5. Ablations on hyper-
parameter λ.

λ 0.01 0.05 0.1 1

mAP 32.9 33.8 33.2 33.5 Figure 7. Schedule of γ.

baselines and Ego-VPA with a learning rate of 0.01 for 10
epochs with AdamW optimizer and the cosine learning
rate scheduler implemented in [5]. For fine-tuning, such a
learning rate will be too high and make the training noisy.
Thus, we also optimize the learning rate for fine-tuning
and set learning rates as 1e-5/1e-4 for Charades-Ego and
EGTEA, respectively. For Ego-VPA, we set λ as 0.05 in all
experiments, and adopt the γ schedule in Figure 7.

B. Parameter Analysis
We compare the number of learnable parameters for video

prompt tuning using CMM [2] and the proposed prompt syn-
thesis (PS) (detailed in section 5.1) in the intra-frame attention
layers respectively. Note that we ignore the common parts of
these methods in this comparison as the number of trainable
parameters in these parts is the same for both methods.

The CMM module [2] uses a 1-layer bi-directional LSTM
(Bi-LSTM) to model context information across frames,
and generates Mv frame-specific prompts per frame by
mapping the LSTM output with a linear projection layer.
The Bi-LSTM with hidden size equal to input size (i.e. dvid)
requires 16dvid2 model parameters, and the linear projection
layer requires 2dvid × MvTdvid parameters, resulting in
param(CMM)=(16+2MvT )d

2
vid parameters in total.

On the contrary, for the proposed PS, the learnable param-
eters for the adaptation are the basis prompts F={f1,...,fB}
and projection layers hvid(;W

h
vid), gvid(;W

g
vid), where

fi∈Rdf∀i, Wh
vid∈Rdf×dvid , and Wg

vid∈Rdvid×df . Hence,
the total number of trainable parameters in intra-frame
attention layers is param(PS)=df (B+2dvid).

Let df = cdvid, B = udvid and c,u be scalars in (0,1],
then we have param(PS) = (udvid + 2dvid)cdvid =

1



Table 6. Ablations on the loss function and prompt query method.
Orthogonality Constraint: 2nd term in Eq. (10).

Prompt Query Orthogonality Constraint mAP

random 33.2
top-k 32.8

sampling from πm 33.3

random ✓ 32.9
top-k ✓ 33.5

sampling from πm ✓ 33.8

(u + 2)cd2vid < param(CMM) = (16 + 2MvT )d
2
vid

if (u + 2)c < 16 + 2MvT , which is easily satisfied as
(u+2)c ≤ 3 < 16+ 2MvT . Note that MvT = 128 in our
settings, where we prompt all the methods with the same
number of prompts per frame to ensure fair comparison
(Check section A for more details). The proposed PS appears
to be a more parameter-efficient method for adaptation.

C. Additional Ablations
In this section, we provide more ablations to complement

the ablations presented in the main paper. Experiments are
conducted on Charades-Ego.
Hyper-parameter λ. λ is a hyper-parameter to weight
between the contrastive learning loss of Eq. (2) and the cross-
modal prompt synthesis loss of Eq. (11). We experimented
with different λ values as shown in Table 5, and set λ as 0.05
in all the experiments as it achieves the best performance.
Schedule of γ. As introduced in section 5.3, we gradually
increase γ, the weight of πsim, from 0 to 1 during training,
following the schedule in Figure 7. This is to prevent the
case that some features are never selected to learn. In the
beginning, the mixture distribution is dominated by πinvf ,
while gradually shifting to πsim as γ increases to 1. We
compare the adopted schedule with a baseline schedule that
linearly increases the γ from 0 to 1. Results show that this
baseline underperforms the proposed one (33.0 vs 33.8).
Loss function and prompt query strategy. In Table 3, we
present the comparison of the proposed sampling strategy
to the top-k method. Table 6 provides the complete table
including comparisons to naive random sampling and top-k
query along with the effect of the orthognality constraint (i.e.
second loss term in Eq. (10)). Sampling with πm surpasses
the other feature query methods either with or without the
orthognality constraint, while adding the constraint generally
improves the performance since it encourages the sparsity of
features in the prompt basis. Overall, the proposed loss and
prompt query strategy performs the best over other variants.
Latent feature dimensiondf . Figure 8 ablates the dimension
of the latent feature space H the text/video frame features
mapped to. Note that the largest df is min(dtxt,dvid)=512,
i.e. log2df =9. As df increases, the compression ratio for

Figure 8. Ablations on latent feature dimension df (shown in
log-scale).

Figure 9. Basis prompt selection frequency with different amounts
of training data.

the frame feature zf ∈ Rdvid or the text feature zt ∈ Rdtxt

is lower, and thus it can be better represented by the basis
prompts and reach better performance.
Basis prompt selection frequency. Figure 9 compares
the frequency that each basis prompt in F is selected when
different amounts of data are used for training. We notice
that compared to low-data regimes (e.g. using only 10%
data), using all the training data tends to make the frequency
distribution more balanced and lead to lower reconstruction
errors (e.g. 10%/100%: 1.36/0.62), which means the basis
prompts are better estimated. This is shown to achieve higher
classification performance as in Figure 5d.

D. Preliminary Experiments on a Charades-Ego
Subset

Since there is no prior work on prompt-tuning for
TimeSformer-based video foundation models (VFMs), we
first created a smaller subset of Charades-Ego [4] that contains
25-shot instances per class to quickly iterate over different
design choices and understand the behavior of different com-
ponents. We provide these preliminary experiments to supple-
ment our main results and as a reference for future research.

D.1. Ablation Studies

Prompt-tuning with different attention blocks. The
video encoder (i.e. TimeSformer [1]) contains two types of



Table 7. Ablations on prompt tuning with different attention blocks
in TimeSformer [1].

Attention block mAP

Spatial-only 29.6
Temporal-only 24.0

Both 28.8

(a) (b)

Figure 10. Ablations on the number of prompts for (a) VPT and
(b) TPT, respectively.

Table 8. Ablations on prompt tuning learning rates.

Learning rate 0.001 0.01 0.1

mAP 29.9 30.3 29.9

Table 9. Comparisons to state-of-the-art prompt-tuning methods
on 25-shot Charades-Ego subset.

Method Trainable Params (%) mAP

Zero-shot 0% 26.8
Full fine-tuning 100% 30.6

TPT [6] 0.002% 28.5
VPT [3] 0.66% 29.6
VoP [2] 0.67% 30.3
VoPF+C [2] 10.86% 30.8

Ego-VPA (ours) 0.84% 31.4

attention blocks, spatial attention and temporal attention, as
introduced in section 3.1. We started with the vanilla video
prompt tuning (VPT) approach as described in section 4 with
these two attention blocks. Table 7 compares the results of
prompt-tuning with different blocks, and we can see that
prompt-tuning only with the spatial attention block leads to
the best performance. As a result, we only prompt-tune for
the spatial attention block in the rest experiments.
Number of prompts. After deciding on the prompting
strategy for the video part. We explored the effect of the
number of prompts on the model performance. Figure 10a
and Figure 10b summarize the results of this ablation on
VPT and TPT respectively. We see similar behaviors when
increasing the number of prompts in both modalities, where
the performance increases with the number of prompts in the
beginning, and then it starts to saturate. By comparing the

results of VPT and TPT, we can also observe that the domain
gap between the pretrained dataset and the downstream
dataset is larger in the visual part than in the text part, as VPT
leads to better performance. However, both of them only
prompt-tune a single modality and can only reach limited
gains due to the limited learning capacity, which justifies the
need of prompt-tuning for both modalities.
Learning rates. We further ablate the learning rates with VoP
that prompt-tunes for both encoders (i.e. VPT+TPT). Since
prompts are learnable parameters added in the input space,
it requires a larger learning rate to propagate the gradients
to these parameters. We experimented with learning rates
in {0.001, 0.01, 0.1} as shown in Table 8, and chose the
best-performing one (i.e. 0.01) for the rest experiments.

D.2. Main results

Table 9 presents the comparison of Ego-VPA to state-
of-the-art prompt tuning methods on this 25-shot subset.
Cross-referencing to the results in Table 2, we can see that
the model performance of these methods holds similar trends.
VoP improves over single-modal prompting methods, VPT
and TPT. By introducing the context modeling module and
frame-aware attention layers, VoPF+C reaches further gain.
However, they all underperform the proposed Ego-VPA,
which only uses 0.84% trainable parameters. This shows that
Ego-VPA is a more efficient and effective solution.

E. Visual Examples

To get more intuition of the prompts in the prompt basis F ,
we further sample some basis prompts fi fromF and visualize
the attention maps between these basis prompts and the video
frames. Figure 11 presents two examples in Charades-Ego [4].
The red parts represent the areas with high attention scores.
Note that some video frames do not contain red areas since
the basis prompt is not queried by those frames. We can
see that the attention maps of different basis prompts do not
have many overlaps. For example, in the laundry example,
basis prompt 1 focuses on the washing machine, while basis
prompt 2 attends to the clothes and hands controlling the
button of the washing machine. In the cooking example,
basis prompt 1 and basis prompt 2 focus on the background
scene and the cooking behavior respectively. This shows that
the basis prompts are diverse and contain different meanings.
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(a) Washing some clothes.
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(b) Cooking.

Figure 11. Visualization of prompt attention maps.
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