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A. Additional Results Comparison

Comparison with CLS Attention In prior works, using
CLS attention weight to rank the importance of patch tokens
has been a prevalent method for enhancing the efficiency
of Vision Transformers (ViTs). However, this approach is
less effective for CLIP’s ViT due to its dual-modality struc-
ture. Addressing this limitation, we introduce ’Patch Rank,’
a novel framework tailored for CLIP’s ViT. To assess the
efficacy of Patch Rank, we conduct a comparative analy-
sis with the CLS attention method across seven datasets,
evaluating performance at keep rates ranging from 100%
to 50%. Token pruning was executed at the first layer of
CLIP’s ViT to optimize computational savings. Importantly,
neither method performs fine-tuning after token pruning. As
shown in Figure 1, our Patch Ranking consistently demon-
strates higher accuracy than CLS attention across all keep
rates and datasets. Notably, our method shows a significant
advantage over CLS attention, especially at lower keep rates
(60% and 50%). This outcome indicates the ability of Patch
Rank to precisely eliminate less informative patch tokens
while minimizing the loss in accuracy, thereby affirming its
effectiveness in the nature of CLIP’s ViT.

B. Ablation study

Architecture of Predictor To construct our predictor, we
selected three different architectures: (1) MLP, which con-
sists of a 256-dimensional hidden layer, layer normalization,
GLUE, and a 196-dimensional hidden layer; (2) Transformer,
specifically a Transformer-encoder block; and (3) Mix-MLP,
which is a single block configuration. To assess the per-
formance of these architectures, we evaluated their top-100
matching rates and pruning effectiveness across various keep
rates, from 80% to 50%. As depicted in Table 1, Mix-MLP
emerges as the most effective, achieving the highest match-
ing rate. Regarding the performance in token pruning, Mix-
MLP demonstrates stable results across all datasets, and
notably, it significantly outperforms the other architectures
in the UCF101 dataset. This superiority of Mix-MLP can
be attributed to its optimal capacity for learning and apply-
ing the Golden Ranking, coupled with its ability to avoid

overfitting the training dataset. Token Pruning Locations

Dataset Arch. Matching rate
Predictor

100 80 70 60 50

Caltech101
MLP 76.5 93.5 93.3 93.2 92.7 91.0
Trans. 73.4 93.5 93.4 93.3 92.8 91.2
Mix-MLP 78.0 93.5 93.6 93.2 93.4 91.0

OxfordPets
MLP 75.7 89.5 89.2 88.5 88.0 84.5
Trans. 72.9 89.5 89.0 89.0 88.0 85.5
Mix-MLP 78.2 89.5 88.6 88.4 88.1 83.5

Flowers102
MLP 69.2 70.5 69.5 69.2 67.4 64.6
Trans. 56.2 70.5 69.8 69.0 67.5 60.9
Mix-MLP 71.9 70.5 69.6 68.8 67.9 63.9

Food101
MLP 70.4 86.0 85.5 84.8 83.7 78.3
Trans. 69.7 86.0 85.7 85.0 83.8 78.5
Mix-MLP 71.9 86.0 85.1 84.2 82.8 75.8

FGVCAircraft
MLP 85.2 23.4 23.5 23.1 23.1 22.8
Trans. 84.6 23.4 23.6 23.6 22.9 22.8
Mix-MLP 89.3 23.4 23.2 23.2 22.9 22.4

DTD
MLP 77.5 45.1 44.6 44.3 43.7 41.9
Trans. 62.1 45.1 44.5 44.9 43.8 42.1
Mix-MLP 72.3 45.1 45.0 44.2 43.7 43.0

UCF101
MLP 77.5 67.0 61.8 58.2 53.6 43.2
Trans. 51.2 67.0 62.2 60.0 53.5 43.5
Mix-MLP 79.7 67.0 66.6 65.9 65.2 60.9

Table 1. Design Choices for the Predictor: This table ex-
plores three different architectures employed as predictors:
Multilayer Perceptron (MLP), Transformer-encoder block
(Trans.), and Mix-MLP. We evaluate these architectures
based on their top-100 matching rates and classification ac-
curacy across various keep rates, ranging from 100% to 50%.
Token pruning is executed at the 4th layer of CLIP’s ViT,
aiming to assess the effectiveness of each architecture in
maintaining accuracy while managing token redundancy.

In our exploration of token pruning locations within CLIP’s
Vision Transformer, we conducted an in-depth analysis to
determine the impact of varying pruning depths on model
performance. This involved progressively pruning an equal
number of patch tokens at different layers while maintaining
a consistent keep rate of 60%. The results are shown in
Table 2. It focuses on four distinct combinations of pruning
locations, ranging from shallower to deeper layers within the
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Figure 1. This figure compares the classification accuracy between the CLS attention method and our Patch Ranking approach,
both without fine-tuning post-token pruning. CLS attention employs CLS attention weights to rank tokens, whereas Patch
Ranking utilizes the Feature Preservation Score for this purpose. Token removal occurs at the first layer of CLIP’s ViT. We
present classification accuracy across different keep rates, ranging from 100% to 50%, highlighting the differential impact of
each method on model performance as the number of pruned tokens increases.

network. Despite a slight margin favoring pruning patch to-
kens at deeper layers, the overall average performance across

all datasets remains notably consistent. This suggests that
our predictor can adapt to different layers within the network,



Pruning Locations Caltech101 OxfordPets Flowers102 Food101 FGVCAircraft DTD UCF101 Avg.
2, 3, 4, 5 94.4 92.3 94.3 82.0 37.9 67.6 81.7 78.6
4, 5, 6, 7 94.3 92.1 95.3 82.2 39.5 68.1 82.0 79.1
1, 3, 5, 7 94.8 91.6 94.4 82.0 39.0 67.8 81.8 78.9
4, 6, 8, 10 95.3 91.4 94.5 83.0 40.0 68.4 83.0 79.2

Table 2. Performance analysis across different pruning locations: In this experiment, we maintained a keep rate of 60% and
progressively pruned equal quantities of patch tokens at four distinct layers within CLIP’s ViT. We examined four different
combinations of pruning locations to evaluate how varying the pruning layers within the network layers affects overall model
performance.

accurately estimating rankings, and identifying redundant
tokens across various depths. Specifically, the minimal vari-
ation in performance across different pruning configurations
indicates that our approach maintains the predictor’s ability
regardless of the specific layers targeted for token reduction.
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