
Supplementary Materials:
Sparse-View 3D Reconstruction of Clothed Humans via Normal Maps

A. Ray-Tracing the Implicit Surface Directly

As an alternative to Marching Tetrahedra, consider cast-
ing a ray to find an intersection point with the implicit sur-
face and subsequently using the normal vector defined (di-
rectly) by the implicit surface at that intersection point. A
number of existing works consider such approaches in var-
ious ways, see e.g. [2, 3, 5, 7, 8]. Perturbations of the inter-
section point depend on perturbations of the ϕ values on
the vertices of the tetrahedron that the intersection point
lies within. If a change in ϕ values causes the intersection
point to no longer be contained inside the tetrahedron, one
would need to discontinuously jump to some other tetrahe-
dron (which could be quite far away, if it even exists). A
potential remedy for this would be to define a virtual im-
plicit surface that extends out of the tetrahedron in a way
that provides some sort of continuity (especially along sil-
houette boundaries).

Comparatively, our Marching Tetrahedra approach al-
lows us to presume (for example) that the point of inter-
section remains fixed on the face of the triangle even as the
triangle moves. Since the implicit surface has no explicit
parameterization, one is unable to similarly hold the inter-
section point fixed. The implicit surface utilizes an Eulerian
point of view where the rays (which represent the discretiza-
tion) are held fixed while the implicit surface moves (as ϕ
values change), in contrast to our Lagrangian discretization
where the rays are allowed to move/bend in order to follow
fixed intersection points during differentiation. A similar
approach for an implicit surface would hold the intersection
point inside the tetrahedron fixed even as ϕ changes. Al-
though such an approach holds potential due to the fact that
implicit surfaces are amenable to computing derivatives off
of the surface itself, the merging/pinching of isocontours
created by convexity/concavity would likely lead to vari-
ous difficulties. Furthermore, other issues would need to
be addressed as well, e.g. the gradients (and thus normals)
are only piecewise constant (and thus discontinuous) in the
piecewise linear tetrahedral mesh basis.

B. Skinning
There are two options for the algorithm ordering between

skinning and Marching Tetrahedra (the latter of which re-
verses the order in Figure 2 of the main paper). For skin-
ning the triangle mesh, the skinned position of each triangle
mesh vertex is vi(θ, ϕ) =

∑
j wij(ϕ)Tj(θ)v

j
i (ϕ) where vji

is the location of vi in the untransformed reference space
of joint j. Unlike in Section 4.1 where wkj and uj

k were
fixed, wij and vji both vary yielding three terms in the prod-
uct rule. ∂vji /∂ϕ is computed according to Equation 3 in
the main paper, noting that uk1

and uk2
are fixed. wij(ϕ) is

defined similarly to Equation 2 in the main paper,

wij =
−ϕk2

ϕk1
− ϕk2

wk1j +
ϕk1

ϕk1
− ϕk2

wk2j (1)

where wk1j and wk2j are fixed; similar to Equation 3,
∂wij/∂ϕ will contain O(1/ϵ) coefficients. For skinning the
tetrahedral mesh, Equations 2 and 3 directly define vi and
∂vi/∂ϕ since the skinning is moved to the tetrahedral mesh
vertices uk. Then, ∂vi/∂uk is computed according to Equa-
tion 2 in order to chain rule to skinning (i.e. to ∂uk/∂θ,
which is computed according to the equations in Section
4.1).

C. Image Rasterization Implementation
C.1. Normals

Recall (from Section 5) that triangle vertices are re-
ordered (if necessary) in order to obtain outward-pointing
face normals. The area-weighted outward face normal is

nf (v1, v2, v3) =
1

2
(v2 − v1)× (v3 − v1) (2)

where

Area(v1, v2, v3) =
1

2
||(v2 − v1)× (v3 − v1)||2 (3)

is the area weighting. Area-averaged vertex unit normals n̂v

are computed via

nv =
∑
f

nf n̂v =
nv

||nv||2 (4)

1

where f ranges over all the triangle faces that include vertex
v. Note that one can drop the 1/2 in Equation 2, since it
cancels out when computing n̂v in Equation 4.

C.2. Camera Model

The camera rotation and translation are used to transform
each vertex vg of the geometry to the camera view coordi-
nate system (where the origin is located at the camera aper-
ture), i.e. vc = Rvg +T . The normalized device coordinate
system normalizes geometry in the viewing frustum (with
z ∈ [n, f]) so that all x, y ∈ [−1, 1] and all z ∈ [0, 1]. See
Figure 1, left. Vertices are transformed into this coordinate
system via

[
[vNDC] zc

zc

]
=

2n
W 0 0 0
0 2n

H 0 0

0 0 f
f−n

−fn
f−n

0 0 1 0

[
[vc]
1

]
(5)

where H = 2n tan(θfov/2) is the height of the image, θfov
is the field of view, W = Ha is the width of the image,
and a is the aspect ratio. The screen coordinate system is
obtained by transforming the origin to the top left corner of
the image, with +x pointing right and +y pointing down.
See Figure 1, right. Vertices are transformed into this coor-
dinate system via

[
[v′]
1

]
=

−W/2 0 0 W/2

0 −H/2 0 H/2
0 0 1 0
0 0 0 1

[
[vNDC]

1

]
(6)

or via

[
[v′] zc
zc

]
=

−n 0 W/2 0
0 −n H/2 0

0 0 f
f−n

−fn
f−n

0 0 1 0

[
[vc]
1

]
(7)

which is obtained by multiplying both sides of Equation 6
by zc and substituting in Equation 5.

C.3. Normal Map

For each pixel, a ray is cast from the camera aperture
through the pixel center to find its first intersection with the
triangulated surface at a point p in world space. Denoting
v1, v2, v3 as the vertices of the intersected triangle, barycen-
tric weights for the intersection point

α̂1 =
Area(p, v2, v3)

Area(v1, v2, v3)

α̂2 =
Area(v1, p, v3)

Area(v1, v2, v3)

α̂3 =
Area(v1, v2, p)

Area(v1, v2, v3)

(8)

1https://pytorch3d.org/docs/cameras

Figure 1. The normalized device (left) and screen (right) coordi-
nate systems used during rasterization (based on Pytorch3D con-
ventions1).

are used to compute a rotated (into screen space) unit nor-
mal from the unrotated vertex unit normals (see Equation 4)
via

n̂ = R
α̂1n̂v1 + α̂2n̂v2 + α̂3n̂v3

||α̂1n̂v1 + α̂2n̂v2 + α̂3n̂v3 ||
(9)

for the normal map. Note that dropping the denominators
in Equation 8 does not change n̂.

C.4. Scanline Rendering

After projecting a visible triangle into the screen coor-
dinate system (via Equation 7), its projected area can be
computed as

Area2D(v′1, v
′
2, v

′
3) = −1

2
det

(
x′
2 − x′

1 y′2 − y′1
x′
3 − x′

1 y′3 − y′1

)
(10)

similar to Equation 3 (where the negative sign accounts for
the fact that visible triangles have normals pointing towards
the camera). When a projected triangle overlaps a pixel
center p′, barycentric weights for p′ are computed by us-
ing Area2D instead of Area in Equation 8. Notably, un-
normalized world space barycentric weights can be com-
puted from un-normalized screen space barycentric weights
via α1 = z′2z

′
3α

′
1, α2 = z′1z

′
3α

′
2, α3 = z′1z

′
2α

′
3 or

α1 = z′2z
′
3Area2D(p′, v′2, v

′
3)

α2 = z′1z
′
3Area2D(v′1, p

′, v′3)

α3 = z′1z
′
2Area2D(v′1, v

′
2, p

′)

(11)

giving

n̂ = R
α1n̂v1

+ α2n̂v2 + α3n̂v3

||α1n̂v1 + α2n̂v2 + α3n̂v3 ||
(12)

as an (efficient) alternative to Equation 9. If more than one
triangle overlaps p′, the closest one (i.e. the one with the
smallest value of z′ = α̂′

1z
′
1+ α̂′

2z
′
2+ α̂′

3z
′
3 at p′) is chosen.

C.5. Computing Gradients

For each pixel overlapped by the triangle mesh, the
derivative of the normal (in Equation 12) with respect to
the vertices of the triangle mesh is required, i.e. ∂αi/∂vg
and ∂n̂vi/∂vg are required. ∂αi/∂v

′ can be computed from
Equations 11 and 10, ∂v′/∂vc can be computed from Equa-
tion 7, and ∂vc/∂vg can be computed from vc = Rvg + T .
∂n̂vi/∂vg can be computed from Equations 4 and 2.

D. Additional Comparisons

Additional results using the PeopleSnapshot dataset are
shown in Figure 2. Our method is able to recover signif-
icantly more face and clothing details compared to prior
work.

E. Network Efficacy

Given ground truth 3D data from [6], we show that
our network has the capacity and flexibility to reconstruct
clothed humans from either a single image or multiple im-
ages. Regardless of the number of input images, the net-
work is trained by minimizing the normal map loss, SDF
regularization losses, and silhouette losses. In the multi-
view case, each image is considered individually (i.e. we
treat multiview as a collection of single view examples).
Figure 3 shows an example of the results obtained by train-
ing our network on 8 camera views surrounding the person
(as compared to the ground truth).

References
[1] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian

Theobalt, and Gerard Pons-Moll. Video based reconstruc-
tion of 3d people models. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
8387–8397, 2018. 4

[2] Sai Praveen Bangaru, Michaël Gharbi, Fujun Luan, Tzu-Mao
Li, Kalyan Sunkavalli, Milos Hasan, Sai Bi, Zexiang Xu,
Gilbert Bernstein, and Fredo Durand. Differentiable render-
ing of neural sdfs through reparameterization. In SIGGRAPH
Asia 2022 Conference Papers, pages 1–9, 2022. 1

[3] Xu Chen, Tianjian Jiang, Jie Song, Jinlong Yang, Michael J
Black, Andreas Geiger, and Otmar Hilliges. gdna: To-
wards generative detailed neural avatars. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20427–20437, 2022. 1

[4] Boyi Jiang, Yang Hong, Hujun Bao, and Juyong Zhang. Sel-
frecon: Self reconstruction your digital avatar from monoc-
ular video. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 5605–5615,
2022. 4

[5] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3504–3515, 2020. 1

[6] Renderpeople, 2018. 3
[7] Delio Vicini, Sébastien Speierer, and Wenzel Jakob. Differen-

tiable signed distance function rendering. ACM Transactions
on Graphics (TOG), 41(4):1–18, 2022. 1

[8] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neural
surface reconstruction by disentangling geometry and appear-
ance. Advances in Neural Information Processing Systems,
33:2492–2502, 2020. 1

Figure 2. Additional PeopleSnapshot dataset results comparing our method, SelfRecon [4], and VideoAvatar [1].

Figure 3. After training from 8 camera views, the input image
in the first column results in the geometry shown in the second
column. Note that the geometry is shown from novel views. For
the sake of comparison, the ground truth geometry is shown from
the same novel views. See also Figure 4.

Figure 4. PIFuHD results, inferred using the input image in Figure
3 and shown from the same novel views (as in Figure 3). We stress
that these results were obtained using inference from a single im-
age, and so one would not expect the same efficacy (especially
from novel views); however, these images do help to calibrate
what one might expect from state-of-the-art inference. The con-
clusion is that our network has the ability to output high-quality
reconstructed geometry.

	. Ray-Tracing the Implicit Surface Directly
	. Skinning
	. Image Rasterization Implementation
	. Normals
	. Camera Model
	. Normal Map
	. Scanline Rendering
	. Computing Gradients

	. Additional Comparisons
	. Network Efficacy

