
The supplementary material to:
”ZAHA: Introducing the Level of Facade Generalization and the Large-Scale

Point Cloud Facade Semantic Segmentation Benchmark Dataset”

A. Experiments
A.1. Evaluation Metrics

To evaluate the performance of the 3D facade segmen-
tation, we used the established semantic segmentation net-
work metrics, such as Overall Accuraccy, Precision, Recall,
and Jaccard Index also known as Intersection over Union
(IoU) [2]. They were defined as follows:

Overall Accuracy =
True Positives + True Negatives

Total Instances

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

F1 = 2× Precision × Recall
Precision + Recall

IoU =
Intersection Area

Union Area
=

=
True Positives

True Positives + False Positives + False Negatives

A.2. Parameter Settings

We conducted all the experiments using an NVIDIA
GeForce RTX 4090 GPU with 16 GB VRAM with a fixed
number of 100 epochs per training. The implementation
will be released under our repository web page.1

To train the PointNet and PointNet++, we utilized the
implementation sourced from [3, 4, 9]. We used the point
cloud coordinates as input layers to adapt the model and
modify the corresponding classes. We employed a batch
size of 32 for training and testing, and each batch contains
1024 points per sample point cloud. Stochastic gradient de-
scent with a momentum of 0.1 and a learning rate 0.001 was
employed.

1Project page: https://github.com/OloOcki/zaha

To train the Point Transformer, we used the implemen-
tation of the first author of Point Transformer [11], in [10].
Diverging from the voxelization method employed in the
source code to generate batches, we have opted for a batch
design strategy based on index segmentation. Consistent
with previous experiments, we also utilized a batch size
of 32 as input and 1024 points per sample point cloud.
Stochastic gradient descent with a momentum of 0.9 and an
initial learning rate of 0.1 was employed. After 60 epochs,
the learning rate would reduced to 0.01, and after 80 epochs,
0.001.

To train the DGCNN, we utilized the implementation
sourced from [5, 8]. We customized their implementation
by adjusting the dimensions of the input and output layers
to suit the dimensionality and the number of classes. During
training, we employed a batch size of 32, while for testing,
we used a batch size of 16, each containing 1024 points per
sample point cloud. Stochastic gradient descent with a mo-
mentum of 0.9 and a learning rate of 0.1 was employed. We
set the dropout rate to 0.5 and the number of nearest neigh-
bors that we considered to 20.

A.3. Extra Baseline Experiment on a Large-Scale-
Oriented Network

Owing to the space limitation and similar performance
scores to the other networks, we have moved the extra ex-
periments on the large-scale-oriented KPConv [6] network
to the supplemental material. Here, we show the extra set
of experiments that we conducted on the KPConv network,
whereby we also fine-tuned the hyper-parameters. KPConv
introduces a deformable convolution operation, allowing
the neural network to learn flexible and adaptive convolu-
tional filters. The use of kernel points in KPConv allows
for more efficient processing of point clouds, and as such,
it has often been used in the context of large-scale, outdoor
point clouds [1]. However, corroborating our experiment
results in the main paper, there were no significant perfor-
mance differences observed, as we visualize in Figure 1 and
Figure 2, and list in Table 1 and Table 2.

To train the KPConv, we employed the implementation
sourced from [6,7]. The input radius of the input sphere was



Figure 1. LoFG3 inference on the test set comprising residential (top), underpass and cultural heritage (middle), and university buildings
(bottom) with the extra fine-tuned KPConv.

Figure 2. LoFG2 inference on the test set comprising residential (top), underpass and cultural heritage (middle), and university buildings
(bottom); color-coding according to the most prominent merged sub-class with the extra fine-tuned KPConv.

set as 1.5m. We also generated the radius of deformable
convolution in the ”number grid cell” as 1.5m, to minimize
noisy clusters. For both baselines, we set the epoch steps as
2000 and the validation size as 100. The batch size was set

to 6 for training and 1 for testing. For the training of LoFG2,
stochastic gradient descent with a momentum of 0.98 and a
learning rate of 0.001 was employed, and there were 150
training epochs. For the training of LoFG3, stochastic gra-



Table 1. LoFG3 test: OA, µP, µR, µF1, µIoU, and F1 scores per
class, in percentages; with the extra fine-tuned KPConv

Method PointNet PointNet++ Point Transformer DGCNN KPConv
OA 59.9 66.4 75.0 71.1 65.2
µP 46.1 37.8 52.7 53.6 46.4
µR 42.2 35.9 54.7 45.8 44.6
µF1 38.7 34.8 52.1 44.5 39.3
µIoU 26.4 25.6 41.6 33.4 28.6
wall 61.1 68.5 76.8 83.8 66.6
window 25.6 26.3 43.1 64.1 41.0
door 13.5 7.8 19.8 21.6 9.6
balcony 25.1 0.0 77.5 66.7 61.7
molding 22.5 43.4 58.0 57.5 23.3
deco 0.0 0.0 5.0 0.0 0.0
column 22.4 33.4 0.0 37.2 0.0
arch 19.2 25.4 50.2 2.6 11.5
stairs 16.0 0.0 7.5 5.6 6.5
ground surface 12.0 0.0 24.4 21.3 26.3
terrain 53.5 53.5 57.6 68.0 31.4
roof 18.7 6.8 66.3 57.4 15.4
blinds 4.6 2.3 18.5 20.0 10.0
interior 59.7 69.1 72.8 88.0 75.1
other 42.7 47.1 70.6 74.1 50.0

Table 2. LoFG2 test: OA, µP, µR, µF1, µIoU, and F1 scores per
class, in percentages; with the extra fine-tuned KPConv

Method PointNet PointNet++ Point Transformer DGCNN KPConv
OA 71.9 75.5 78.2 82.6 71.6
µP 69.6 73.0 75.8 80.0 71.2
µR 68.1 73.0 76.6 81.8 64.3
µF1 68.1 72.6 76.1 80.4 66.4
µIoU 55.8 59.8 63.9 68.5 52.3
floor 92.3 87.6 90.7 92.1 80.1
decoration 26.2 47.1 47.0 70.0 28.2
structural 60.9 65.5 67.0 85.2 62.4
opening 28.2 27.2 36.0 66.2 31.7
other el. 71.2 71.6 78.9 88.8 58.5

dient descent with a momentum of 0.98 and a learning rate
of 0.01 was employed, and the training epochs were set as
the default number 500.

A.4. Benchmark and Leaderboard

We introduce the ZAHA as a benchmark to foster the
research on facade semantic segmentation. It is a com-
mon practice to publish a leaderboard, which encourages re-
searchers to delve into a challenge. We initialize the leader-
board at the webpage 2 and invite researchers to develop
novel and more efficient facade segmentation methods.

A.5. Extra visuals

Additional visuals are included at the project page 3

showing an animated gif file, and the full dataset and an-
notations according to the 15 introduced classes.

References
[1] Martin Kada and Dmitry Kuramin. Als point cloud classi-

fication using pointnet++ and kpconv with prior knowledge.
The International Archives of the Photogrammetry, Remote

2Leaderboard: https://tum2t.win/benchmarks/pc-fac
3Project page: https://github.com/OloOcki/zaha

Sensing and Spatial Information Sciences, 46:91–96, 2021.
1

[2] Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Michael A
Chapman, Dongpu Cao, and Jonathan Li. Deep learning for
lidar point clouds in autonomous driving: A review. IEEE
Transactions on Neural Networks and Learning Systems,
32(8):3412–3432, 2020. 1

[3] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
PointNet: Deep learning on point sets for 3d classification
and segmentation. IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 652–660, 2017.
1

[4] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in Neural Information
Processing System (NeurIPS), 30, 2017. 1

[5] An Tao. dgcnn.pytorch. https://github.com/
antao97/dgcnn.pytorch, 2024. Accessed: 2024-03-
06. 1

[6] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 6411–6420, 2019. 1

[7] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. KPConv pytorch. https://github.com/
HuguesTHOMAS/KPConv-PyTorch, 2019. Accessed:
2024-03-06. 1

[8] Yue Wang, Yongbin Sung, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics, 38(5):1–12, 2019. 1

[9] Xu Yan. Pointnet/pointnet++ pytorch. https :
//github.com/yanx27/Pointnet_Pointnet2_
pytorch, 2019. Accessed: 2024-03-06. 1

[10] Hengshuang Zhao. point-transformer. https :
/ / github . com / POSTECH - CVLab / point -
transformer, 2021. Accessed: 2024-03-06. 1

[11] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr,
and Vladlen Koltun. Point transformer. IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
16259–16268, 2021. 1

https://github.com/antao97/dgcnn.pytorch
https://github.com/antao97/dgcnn.pytorch
https://github.com/HuguesTHOMAS/KPConv-PyTorch
https://github.com/HuguesTHOMAS/KPConv-PyTorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/yanx27/Pointnet_Pointnet2_pytorch
https://github.com/POSTECH-CVLab/point-transformer
https://github.com/POSTECH-CVLab/point-transformer
https://github.com/POSTECH-CVLab/point-transformer

