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A. Supplementary Information
A.1. Explainable AI Methods

For the attribution maps in Fig. 5 of the main paper, we use Expected Gradients (EG) [4] for the CMNIST dataset and
guided Gradient-weighted Class Activation Mapping (GGCAM) [10, 12] for the other two datasets. Due to its up-sampling
mechanism, GGCAM is only suitable to a limited extent to compute the attribution of each RGB channel individually. For
the results presented in the supplementary section A.2, we additionally apply Integrated Gradients (IG) [13] with a black (i.e.
zero) baseline value and the traditional Gradient-weighted Class Activation Mapping (GCAM).

Integrated Gradients. IG calculates a path integral from a baseline value x0 to the actual value xj for each of the j input
features, in our case pixels or voxels.

IGj(x, x0) = (xj − x0j)

∫ 1

α=0

∂f(x0 + α(x− x0))

∂xj
dα (1)

However, selecting a baseline value x0 for IG is often ambiguous, and executing multiple path integrals across different
baseline values can be inefficient.

Expected Gradients. To avoid selecting a baseline value as would be necessary for IG, Erion et al. [4] presented a solution
based on a probabilistic baseline computed over a sample of observations:

EGj(x) =

∫
x0

IGj(x, x0) pD(x0) dx0 (2)

=

∫
x0

(
(xj − x0j)

∫ 1

α=0

∂f(x0 + α(x− x0))

∂xj
dα

)
pD(x0) dx0 (3)

= E
x0∼D, α∼U(0,1)

[
∂f(x0 + α(x− x0))

∂xj
dα

]
, (4)

*These authors contributed equally to this work.

1



with x0 as the baseline, xj the input feature number j and D as the underlying data distribution. In practice, EG is
computed via a mini-batch procedure by drawing samples for x0 and α, computing the expression inside the expectation, and
averaging over the mini-batch.

(Guided)-GradCAM. GGCAM is the combination of Guided Backpropagation (GB) [12] and GradCAM [10]. GradCAM
computes the attribution via backpropagation into a selected hidden layer, usually the last convolutional layer, and up-samples
it to the input size. GradCAM leverages the idea that convolutional neural networks transform spatial to semantic information
by attributing to the semantic information, which is then up-sampled back into the input space. GB, on the other hand,
backpropagates directly from a target output into the original image but via a guiding function, overriding non-negative
gradients from Rectified Linear Unit (ReLU) activation functions. GGCAM takes the element-wise product between GB and
the non-negative GradCAM attributions, leveraging both the semantic information from GradCAM and the more fine-grained
spatial information in the input space from GB.
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Supplementary Figure 1. EG and IG attribution maps of our model for the control head, treatment group head, and CATE output for the
four CMNIST dataset samples, showcasing the presence or absence of the predictive and prognostic biomarker. We present the attribution
map for each RGB color channel (left: red, top: green, right: blue).

A.2. Additional feature attributions results for interpreting predictive imaging biomarkers

Further attribution maps for samples from the CMNIST, CUB-200-2011, ISIC 2018, and NSCLC-Radiomics dataset and
the control head Ŷ (T = 0), CATE Ŷ (T = 1) − Ŷ (T = 0) and additionally the treatment group head output Ŷ (T = 1) are
presented in Supplementary Fig. 1, 2, 3 and 5, respectively. Each figure showcases the results of four examples with varying
presence or values of predictive and prognostic biomarkers.



CMNIST. We extend our analysis of the main paper and show two additional CMNIST images and IG attribution maps in
Supplementary Fig. 1. The blue color channel only shows noisy attribution for both EG and IG attribution maps, suggesting
minimal impact on the model’s predictions. While attribution maps for the digit color channel show consistent patterns
across EG and IG methods, they differ for the other remaining color channel. For the control group head output Ŷ (T = 0),
a positive attribution is observed from the green color channel for both the digit 0 and 7 in the top row, whereas a negative
attribution is observed in both the red and also green color channel of the digit 9 and 4 in the bottom row. This indicates
that the model correctly identifies the prognostic biomarker “digit is green” from the relevant color channel. The attribution
maps of the predicted CATE output Ŷ (T = 1)− Ŷ (T = 0) exhibited notable negative attribution in the color channel of the
digit color for both the digit 0 and 9 in the left column, indicating the absence of the predictive biomarker “has no circle”.
An overall positive attribution was observed in the green color channel of digit 7, suggesting the presence of the predictive
biomarker. However, a more negative attribution with some noisy positive attribution is seen for the red channel of the digit
four, indicating some ambiguity in identifying the presence of the predictive biomarker.

GradCAM

Control group  
head attribution

Treatment group  
head attribution

Treatment effect 
attribution

Predictive biomarker: 
“bill > head” = True

Prognostic biomarker: 
“is white” = False

Guided  
GradCAM

GradCAM

Control group  
head attribution

Treatment group  
head attribution

Treatment effect 
attribution

Predictive biomarker: 
“bill > head” = False

Prognostic biomarker: 
“is white” = True

Guided  
GradCAM

GradCAM

Control group  
head attribution

Treatment group  
head attribution

Treatment effect 
attribution

Predictive biomarker: 
“bill > head” = False

Prognostic biomarker: 
“is white” = False

Guided  
GradCAM

Positive attribution Negative attribution

GradCAM

Control group  
head attribution

Treatment group  
head attribution

Treatment effect 
attribution

Predictive biomarker: 
“bill > head” = False

Prognostic biomarker: 
“is white” = True

Guided  
GradCAM

Supplementary Figure 2. GCAM and GGradCAM attribution maps of our model for the control head, treatment group head, and CATE
output for four CUB-200-2011 dataset samples, showcasing the presence or absence of the predictive and prognostic biomarker.

CUB-200-2011. The extended results for the CUB-200-2011 dataset are shown in Supplementary Fig. 2. The GCAM
attribution maps of the control group head output Ŷ (T = 0) indicate that the model focuses the most on the main body of
the bird. The GGCAM attribution maps reveal overall negative attributions from the wing and tail (top left and top right)
or from the belly region (bottom left) and an overall positive attribution from the tail and head/neck region (bottom right).
While this suggests that the model incorrectly identifies the prognostic biomarker “has primary color: white” of the top
left bird as black due to the black wings, it correctly identifies it in the other three cases. For the predicted CATE output



Ŷ (T = 1)− Ŷ (T = 0), the GCAM attribution maps highlight the beak and neck areas, which corresponds to the areas where
the predictive biomarker “has bill length: longer than head”, but also parts of the bottom areas of the birds. The GGCAM
attribution maps show overall positive attributions in all examples except the bottom right, indicating that it is more difficult
for the model to correctly distinguish the relative bill lengths, except for the top and bottom right examples.
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Supplementary Figure 3. Attribution maps for an example image containing a pigment network (shown as a mask) but no globules for an
image of the ISIC 2018 dataset.

ISIC 2018. As mentioned in the Sec. 3.2 and shown in Fig. 5 of the main paper, the model likely uses the lighter gaps or
“holes” between the dark vein-like grid structure to detect pigment networks. We expect the treatment group head Ŷ (T = 1)
to be sensitive to both predictive and prognostic biomarkers. In Supplementary Fig. 3 we observe in the treatment group
head’s attribution map that there is positive attribution again (shown in blue) in the light interspaces but also negative attribu-
tion (in red) in the dark veins. This observation also supports the hypothesis that the model associates the dark veins with the
globules but detects the pigment network correctly through the light interspaces as seen for the treatment effect attribution
map, as the lighter interspaces are uniquely present in pigment networks. The Supplementary Fig. 4 shows the results for
three additional examples from the ISIC 2018 dataset. The GCAM attribution maps show a lack of clear localization, except
for the bottom left example, indicating that the network does not identify a clear localization of the biomarkers. When com-
paring the GGCAM attribution maps, even though the attribution maps show that the network identifies some structures, only
the location of the predictive biomarker “has pigment network” is likely correctly identified by the network in the bottom left
example when comparing to the ground truth segmentation.

NSCLC-Radiomics. The additional attribution map results for the NSCLC-Radiomics dataset are depicted in Supplemen-
tary Fig. 5. Both the GCAM and GGCAM attribution maps for the control group output Ŷ (T = 0) show the most attribution
from areas surrounding the tumors. This is especially evident in areas where the tumor shape is not spherical or round, such as
in the bottom right color of the upper left tumor example or the thinner section in the middle of the lower left tumor example.
GCAM attribution maps for the CATE output Ŷ (T = 1)− Ŷ (T = 0) show that the model tends to focus on the darker parts
of the image slices. The corresponding GGCAM attribution maps reveal more negative attributions from the darker parts of
the images, but strong positive attributions from the neighboring lighter parts in all four examples. This observation aligns
with the fact that the minimum pixel intensity value contributes strongly to the predictive biomarker feature “energy”. To
provide deeper insights into how the model identifies 3D features, we also show the 3D attribution maps for one example
in Supplementary Fig. 6. Here, the 3D attribution map for the control group output Ŷ (T = 0) highlights an area above the
tumor, likely erroneously. The CATE output Ŷ (T = 1) − Ŷ (T = 0) shows a high attribution on the upper right side of
the tumor where it appears flat. This area likely corresponds to the region where the principal components lie and which
contributes to the predictive biomarker “flatness”.
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Supplementary Figure 4. GCAM and GGradCAM attribution maps of our model for the control head, treatment group head, and CATE
output for four ISIC 2018 dataset samples, showcasing the presence or absence of the predictive and prognostic biomarker.

A.3. CATE estimation performance and biomarker identification performance

In CATE estimation, a model’s performance is usually evaluated using the Precision of Estimating Heterogeneous Effects
(PEHE) [6] metric, which is defined as

PEHE =

√
1

n

∑
i

(τi − τ̂i)2, (5)

where n denotes the number of test samples, τi the true CATE and τ̂i the estimated CATE for a test sample i. In Supplementary
Fig. 7 and Supplementary Table 1, where the PEHE metric is reported alongside the root mean square error (RMSE) of the
prediction of factual outcomes, we observe a better CMNIST compared to the other three datasets. This observation also
corresponds to the performance for the relative predictive strength as observed in Fig. 4 of the main paper.

There are variations within the same dataset between models trained with biomarkers on feature sets (a) and (b), which is
likely since it is slightly easier for the models to identify one type of prognostic and predictive biomarker combinations than
the others. A lower RMSE but a high PEHE indicates that the model can only predict the factual outcomes well but not the
counterfactual outcomes, which slight effects of overfitting could cause. Due to the different sampling space of the simulation
parameters bpred and bprog , only a limited comparison can be made for CMNIST with the other two datasets, however. As
the scale of the CATE automatically changes with parameters bpred and bprog [2], also the PEHE changes, which therefore
also depends on the absolute value of bpred and bprog . This phenomenon further the comparability across different ratios
bpred/bprog .

The RMSE and PEHE results for NSCLC-Radiomics are worse and have a slightly larger variance than for the CUB-200-
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Supplementary Figure 5. GCAM and GGCAM attribution maps of our model for the control head, treatment group head, and CATE output
for one sagittal slice of each of the four NSCLC-Radiomics dataset samples, showcasing the predictive and prognostic biomarker with
varying strengths. The tumor segmentation outlines are shown in orange.
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Supplementary Figure 6. 3D GCAM attribution maps of our model for the control head, treatment group head, and CATE output, illustrated
for a 3D patch from the NSCLC-Radiomics dataset. Additionally, a 3D render of the segmented tumor and a 2D sagittal slice are shown.



2011 and ISIC 2018 datasets, which also explains the models’ worse performance in identifying predictive biomarkers as
shown in Fig. 4 of the main paper.

However, it is generally not possible to directly conclude a model’s performance concerning identifying the correct imag-
ing biomarkers just from the PEHE metrics alone [2, 3]. In our case, the exact value of the CATE is not directly important
for the evaluation, as our main task of interest is identifying predictive imaging biomarkers. Therefore, the PEHE is only
suitable as a secondary evaluation metric alongside the evaluation methods mentioned in the Sec. 2.3 of the main paper.
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Supplementary Figure 7. Performance of our treatment effect estimation models trained with biomarkers from feature set (a) or (b) with
respect to the precision of estimating heterogeneous effects (PEHE) for different simulation parameters bpred/bprog (i.e. relative size of the
predictive effect in the simulated outcomes). The lower the PEHE the better the performance.

Dataset Feature Set PEHE RMSE

CMNIST (a) 0.121 0.094
(b) 0.045 0.115

CUB-200-2011 (a) 0.227 0.304
(b) 0.277 0.261

ISIC 2018 (a) 0.304 0.352
(b) 0.308 0.362

NSCLC-Radiomics (a) 0.475 0.561
(b) 0.469 0.633

Supplementary Table 1. Performance with respect to the mean PEHE and RMSE for the prediction of factual outcomes per dataset for our
treatment effect estimation models trained with biomarkers from feature set (a) or (b).

A.4. Implementation details

In our experiments, the two-headed CATE estimation models are all based on the ResNet [5] architecture tailored to each
dataset. For the CMNIST experiments, we utilize a MiniResNet (ResNet-14) with 14 layers, 0.20 M parameters, and only
three building blocks. In the CUB-200-2011 and ISIC 2018 experiments, we employ a two-headed ResNet-18 with 11.18 M
parameters, and for the NSCLC-Radiomics a two-headed 3D ResNet with 33.30 M parameters. In all architectures, the



treatment-specific heads consist of either the last fully connected layer or the last four fully connected layers for NSCLC-
Radiomics experiments. Its preceding convolutional layers learn shared presentations of control and treatment group data.
We use the classic (one-headed) version of the corresponding ResNet architectures as our baseline models. The models for
CMNIST are trained for 400 epochs with a mini-batch size of 1000. For CUB-200-2011 and ISIC 2018, the models are
trained with a mini-batch size of 64 and for 1000 or 2000 epochs respectively. The NSCLC-Radiomics models are trained
with a batch size of 8 and 2000 epochs. For data all datasets, we use the mean squared error loss function, a learning rate of
lr = 0.001, and the SGD optimizer.

For preprocessing, we apply zero padding of size 2 to each edge of the CMNIST images. The CUB-200-2011 images are
resized so their smaller edge has the size 256. We augment the data by performing random crop and horizontal flips so that
all final images have the size 224× 224. We resize the ISIC 2018 images to 224 for the shorter edge, crop them to between
40% and 100% of their previous size, and resize them again to size 224×224. We augment them with random horizontal and
vertical flips, randomly applied rotations by 90 degrees and color jitters. During the inference of both CUB-200-2011 and
ISIC 2018 images, center crops are used. All 2D images are normalized by subtracting the mean and dividing by the standard
deviation of the respective channel from the training dataset. For the NSCLC-Radiomics dataset, we added padding of value
-1024 (HU) so that all 3D patches are of the size 162 × 162 × 54. All radiomics features are normalized by subtracting the
mean and dividing by the standard deviation of each feature. 3D image augmentations are implemented using the MONAI
deep-learning framework [1] and include random flipping, random rotation by 90 degrees along the xy-axis, and random
zooming with probability 0.5 by a factor in the range [0.9, 1.1]. Resampling to the median spacing of the dataset [0.9765625,
0.9765625, 3.0] mm is based on Isensee et. al [7] and uses a third-order spline in-plane and nearest-neighbor interpolation
out-of-plane.

For the statistical evaluations, linear regression using ordinary least squares and t-tests for the fit coefficients as described
in Sec. 2.3 of the main paper are performed using the statsmodels python module [9]. To create attribution maps, we use
expected gradients (EG) [4] for CMNIST and guided gradient-weighted class activation mapping (GGCAM) [10, 12] for the
other three datasets. Using EG allows us to determine the attribution of each color channel in contrast to CAM methods,
which is vital for discovering the color-related CMNIST biomarkers. Both methods are implemented using Captum [8] and
enhanced by SmoothGrad [11] to make the attribution maps less noisy and more robust.
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[2] Jonathan Crabbé, Alicia Curth, Ioana Bica, and Mihaela van der Schaar. Benchmarking heterogeneous treatment effect models

through the lens of interpretability. In Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2022. 5, 7

[3] Alicia Curth, David Svensson, Jim Weatherall, and Mihaela van der Schaar. Really doing great at estimating CATE? a critical look
at ML benchmarking practices in treatment effect estimation. In Thirty-fifth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2), 2021. 7

[4] Gabriel Erion, Joseph D Janizek, Pascal Sturmfels, Scott M Lundberg, and Su-In Lee. Improving performance of deep learning
models with axiomatic attribution priors and expected gradients. Nature machine intelligence, 3(7):620–631, 2021. 1, 8

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778, 2016. 7

[6] Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computational and Graphical Statistics,
20(1):217–240, 2011. 5

[7] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen, and Klaus H Maier-Hein. nnu-net: a self-configuring method for deep
learning-based biomedical image segmentation. Nature methods, 18(2):203–211, 2021. 8

[8] Narine Kokhlikyan, Vivek Miglani, Miguel Martin, Edward Wang, Bilal Alsallakh, Jonathan Reynolds, Alexander Melnikov, Natalia
Kliushkina, Carlos Araya, Siqi Yan, and Orion Reblitz-Richardson. Captum: A unified and generic model interpretability library for
pytorch, 2020. 8

[9] Skipper Seabold and Josef Perktold. statsmodels: Econometric and statistical modeling with python. In 9th Python in Science
Conference, 2010. 8

[10] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam:
Visual explanations from deep networks via gradient-based localization. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 618–626, 2017. 1, 2, 8

[11] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda B. Viégas, and Martin Wattenberg. Smoothgrad: removing noise by adding
noise. CoRR, abs/1706.03825, 2017. 8



[12] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving for simplicity: The all convolutional
net. In ICLR (workshop track), 2015. 1, 2, 8

[13] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep Networks. arXiv:1703.01365 [cs], June 2017.
arXiv: 1703.01365. 1


	. Supplementary Information
	. Explainable AI Methods
	. Additional feature attributions results for interpreting predictive imaging biomarkers
	. CATE estimation performance and biomarker identification performance
	. Implementation details


