
Localized Gaussian Splatting Editing with Contextual Awareness
Supplementary Material

Hanyuan Xiao1,2 Yingshu Chen3 Huajian Huang3

Haolin Xiong4 Jing Yang1,2 Pratusha Prasad1,2 Yajie Zhao1,2,*

1University of Southern California 2Institute for Creative Technologies
3HKUST 4University of California, Los Angeles

1,2{hxiao, jyang, bprasad, zhao}@ict.usc.edu 3{ychengw, hhuangbg}@connect.ust.hk 4{xiongh}@ucla.edu

Abstract

In this supplementary material, we first detail the imple-
mentation specifics in Sec. 1, including the pseudocode of
our Anchor View Proposal algorithm, the training configu-
rations, and the hardware setup and training speed. Sec-
ondly, we supplement additional qualitative results in di-
verse scenes in Sec. 2. Thirdly, we present a user study
demonstrating the superiority of our method compared to
baseline approaches (Sec. 3). Fourthly, we showcase our
graphical user interface in an example generation task
(Sec. 4). Lastly, we discuss on the limitations and poten-
tial future directions of our research (Sec. 5). In addition to
this document, we have attached several 360-degree videos
and a live demo of our GUI usage.

1. Implementation Details
1.1. Pseudocode of Anchor View Proposal Algo-

rithm

We provide pseudocode for the proposed Anchor
View Proposal (AVP) algorithm in Alg. 1. For the
addConstrast function, we compute the minimum and
maximum values in the V-channel image and map pixel val-
ues from the range [minimum, maximum] to [0, 1]. For the
image plane rotation R, we select eight angles, each two
views being 45 degrees apart in the 2D image plane.

1.2. Training Details

Resolution. In the coarse step, we gradually increase
the resolution of sampled random views from 64 × 64 to
128 × 128, and then to 256 × 256 at iterations 0, 200, and
300, respectively. For the conditioning view, we increase
the resolution from 128 × 128 to 256 × 256, and then to

*Corresponding Author

512 × 512 at the same iteration milestones. We found that
the coarse step often converges around 3500 iterations, gen-
erating relatively fine detail. During the Texture Enhance-
ment step, the resolution of both random views and the con-
ditioning view is set to 512× 512.

Classifier-free Guidance Scale. We use a guidance scale
of 3.0 in the coarse step and 100 for DI-SDS in the Texture
Enhancement step.

Algorithm 1 Anchor View Proposal
Input: multi-view RGBA images I , leftIsBrighter flag fl
Output: anchor view index î

function ANCHORVIEWPROPOSAL(I , fl)
V ← getValueChannel(RGBA2HSV(I)) ▷ Value Images
M ← getAlphaChannel(I) ▷ Mask
R← [1 . . . 8]× 45 ▷ Image Plane Rotations
B ← 0 ▷ Image Brightness Balance
for all vi, mi in V , M do

S ← 0
vi[mi]← addContrast(vi[mi])
for all r in R do

gi,r ← rotateImage(vi, r)
mi,r ← rotateImage(mi, r)
S[r]← calculateBrightnessBalance(gi,r , mi,r , fl)

end for
B[i]← min(S − 1)

end for
B ← abs(B)
return î← argmin(B)

end function
function CALCULATEBRIGHTNESSBALANCE(v, m, fl)

h,w ← imageHeight(v), imageWidth(v)
Il, Ir ← leftHalf(v[m]), rightHalf(v[m])
bl, br ← mean(Il), mean(Ir) ▷ Brightness of Masked Half Pixels
if fl is True then

return bl/(bl + br)
else

return br/(bl + br)
end if

end function

Loss Weights. In the coarse step, the weight of the RGB
loss λrgb and the weight of the mask loss λmask both start



from 0, increase to 1500 at iteration 1000, and stay at 1000
for the remaining iterations. The weight of the optimiza-
tion loss by the 3D-aware diffusion prior λ3D−SDS remains
constant at 1. During the Texture Enhancement step, λrgb

and λmask are constantly 1500, and the weight of the DI-
SDS loss λDI−SDS is constantly 0.1.

Learning Rates. The learning rate for the position of
Gaussian splats starts from 1 × 10−3 and decreases to
10−5 with exponential decay from iteration 0 to 1000 in
the coarse step, and from 10−4 to 10−5 from iteration 0 to
10000 in the Texture Enhancement step. The learning rate
for the scaling of Gaussian splats is [5 × 10−3, 5 × 10−4]
in the coarse step and [5 × 10−4, 5 × 10−5] in the Texture
Enhancement step, with the same milestones as the posi-
tion. The rotation, color, and alpha of Gaussian splats are
constantly 5×10−3, 10−2, 10−2, respectively, in both steps.

1.3. Hardware Requirement & Speed

We train our pipeline on a single NVIDIA A40 GPU.
The VRAM usage is approximately 20GB for the coarse
step and 43GB for the Texture Enhancement step. Each it-
eration takes around 0.5 seconds for the coarse step and 7.8
seconds for the Texture Enhancement step, as per the set-
tings detailed in Sec. 1.2. The total number of iterations
depends on complexity in geometry and texture. Typically,
we found the coarse step converges after 6500 iterations.
While texture enhancement step highly depends on user’s
preference, we usually stops this step after 2000 iterations
incremented from the coarse step. We sample random views
with a batch size of 6 for the coarse step and 4 for the Tex-
ture Enhancement step. We discovered that increasing the
batch size significantly reduces color deviation in the Tex-
ture Enhancement step.

2. More Results

We provide more qualitative results in Fig. 2, 3 and 4.
In the figures, we show the anchor view images of the orig-
inal scenes with 3D bounding box for editing, inpainted an-
chor view images, text prompts for generation, and multi-
view rendering results from our pipeline. In addition to
LERF [7], MipNeRF360 [2] and our self-captured datasets,
we use a commercially purchased synthetic scene (the first
case in Fig. 2 and the third case in Fig. 4). For the synthetic
scene, we rendered RGB images in 800 × 800 resolution
under 332 virtual camera views (48.5-degree field of view)
around the scene to densely supervise 3DGS training. For
our self-captured datasets, we use a Canon EOS-1D camera
to capture around 400 photos of each scene and send the
raw colored images to COLMAP for calibration.

Figure 1. User Study statistics

3. User Study

To further substantiate our claim that our method gener-
ates more photorealistic results than state-of-the-art meth-
ods – GaussianEditor [3] and Vica-NeRF [5], we conducted
an anonymous user study. The statistics of users’ prefer-
ences are provided in Fig. 1.

We created a questionnaire featuring output examples
from different methods shown in Fig.5 of the main paper.
The order of the methods was randomized to mitigate po-
tential bias. Participants were asked to choose the result
that best aligned with the input text prompt and appeared
the most photorealistic in each question comparing the three
methods.

We also requested participants to share their age group
(options were “‘below 18”, “18-25”, “26-35”, “36-45”,
“46+”) and their familiarity with the fields of computer vi-
sion (CV) or computer graphics (CG) (options were “Yes”,
“No”, “Maybe”). All 26 questionnaires were collected
anonymously.

According to the results, no users preferred Vica-NeRF,
29.49% preferred GaussianEditor, and 70.51% preferred
our method. Among the participants, 19.2% fell into the age
group of 18-25, 76.9% into 26-35, and 3.8% did not provide
their age. As for familiarity with CV or CG, 61.5% claimed
familiarity, 26.9% claimed no familiarity, 7.7% were uncer-
tain (“Maybe”), and 3.8% did not provide their familiarity
level.

4. Graphical User Interface

We also package our pipeline into an application with
graphical user interface as an extra contribution. An exam-
ple of the interface can be found in Fig. 5. The system is
built upon Viser [1], an open-source interactive 3D visual-
ization library. The system supports original GSGen [4] and
3D Gaussian Splatting [6] rendering and live progress check
of training. We also leave APIs easy to change in a separate
configuration file. This allows users and researchers to con-
duct future experiments in both text-to-3D and image-to-3D
generative tasks.



5. Discussion
5.1. Limitations

Our current method guarantees photorealism between
the generated object and input scene, but it does not en-
sure physically accurate lighting. In scenes with complex
lighting, a single conditioning anchor view often provides
insufficient lighting information. Additionally, current text-
guided generation schemes do not support shadow edit-
ing, which requires disentanglement and editing of back-
ground. Therefore, it is necessary to involve conventional
inverse rendering and ray tracing similar to [8–13]. Also,
our pipeline may still require manual tuning in AVP step,
where the collection of renderings for anchor view proposal
needs to avoid occlusion and surface intersection. When
the directional illumination is cast from top to bottom, the
manual set elevation angle is crucial. It will be intuitive and
straightforward to extend Azimuth rotation to further sam-
ple also elevation rotation, but this will also require manual
tuning.

5.2. Future Works

Our current task involves object-centered replacement
and editing. This process requires the editing region to be
enclosed in a bounding box, separate from the other point
clouds in the scene. As a result, detailed editing that inter-
acts with existing scene objects is not yet possible. In such
cases, we need a more precise segmentation and generation
method to optimize both the generated point cloud and the
scene point cloud, to ensure multi-view consistency.

References
[1] viser. 2
[2] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. CVPR, 2022. 2

[3] Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng
Yang, Yikai Wang, Zhongang Cai, Lei Yang, Huaping Liu,
and Guosheng Lin. Gaussianeditor: Swift and controllable
3d editing with gaussian splatting. In CVPR, 2024. 2

[4] Zilong Chen, Feng Wang, and Huaping Liu. Text-to-3d using
gaussian splatting. In IEEE Conference on Computer Vision
and Pattern Recognition, 2024. 2

[5] Jiahua Dong and Yu-Xiong Wang. ViCA-neRF: View-
consistency-aware 3d editing of neural radiance fields. In
Thirty-seventh Conference on Neural Information Process-
ing Systems, 2023. 2

[6] Kerbl, Bernhard and Kopanas, Georgios, Thomas
Leimkühler, and George Drettakis. 3d gaussian splatting for
real-time radiance field rendering. ACM Transactions on
Graphics, 42(4), July 2023. 2

[7] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo
Kanazawa, and Matthew Tancik. Lerf: Language embedded
radiance fields. In International Conference on Computer
Vision (ICCV), 2023. 2

[8] Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia.
Gs-ir: 3d gaussian splatting for inverse rendering, 2024. 3

[9] Linjie Lyu, Ayush Tewari, Thomas Leimkuehler, Marc
Habermann, and Christian Theobalt. Neural radiance trans-
fer fields for relightable novel-view synthesis with global il-
lumination, 2022. 3

[10] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.
Nerv: Neural reflectance and visibility fields for relighting
and view synthesis, 2020. 3

[11] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T. Barron, and Pratul P. Srinivasan. Ref-nerf: Struc-
tured view-dependent appearance for neural radiance fields,
2021. 3

[12] Chong Zeng, Guojun Chen, Yue Dong, Pieter Peers, Hongzhi
Wu, and Xin Tong. Relighting neural radiance fields with
shadow and highlight hints. In Special Interest Group
on Computer Graphics and Interactive Techniques Confer-
ence Conference Proceedings, SIGGRAPH ’23, page 1–11.
ACM, July 2023. 3

[13] Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul
Debevec, William T. Freeman, and Jonathan T. Barron. Ner-
factor: neural factorization of shape and reflectance under
an unknown illumination. ACM Transactions on Graphics,
40(6):1–18, Dec. 2021. 3



Figure 2. More Results 1 of 3. We show original and inpainted anchor view in the first column, and multi-view rendering results of our
method in the right three columns.



Figure 3. More Results 2 of 3. We show original and inpainted anchor view in the first column, and multi-view rendering results of our
method in the right three columns.



Figure 4. More Results 3 of 3. We show original and inpainted anchor view in the first column, and multi-view rendering results of our
method in the right three columns.



Figure 5. Graphical User Interface of our pipeline. We develop a GUI that includes Anchor View Proposal, coarse image-to-3D generation
and texture enhancement steps. The interactive viewer is especially useful to visualize training procedure and results. In the lower left
figure, we show rendering of depth images of the same scene besides rendering of RGBA frames.


