
A. Appendix Overview
This supplementary material provides the following ad-

ditional information for a better understanding of our paper:
Sec. B report our results on the Revisited San Francisco (R-
SF) dataset. Sec. C discusses the limitations of our work.
Sec. D summarizes the comparison of architecture for dif-
ferent SSL methods. Sec. E shows the extended results of
our two-stage methods. Sec. F explains the data source of
state-of-the-art VG results. Sec. G explains the preprocess-
ing procedure in the inference stage. Sec H shows the anal-
ysis of visualized results of models trained with different
SSL strategies.

B. Results on R-SF
We add results on Revisited San Francisco (R-SF) [12,

44] in Table B, comparing with triplet loss baseline. The
results reflect a similar trend as other datasets except that
Barlow Twins does not show superior performance.

C. Limitations
This section reflects on the limitations of our research.

A key limitation is the small batch sizes used (32 and 64),
which are significantly smaller than those typically used
in SSL methods, often exceeding 512. This may result in
suboptimal performance. We chose smaller batch sizes to
maintain comparability with other VG studies due to re-
source constraints. Larger batch sizes would have required
more training steps to achieve similar results.

Another limitation is the scope of data augmentation.
As noted in the Deep VG benchmark [9], the effective-
ness of data augmentation can vary across datasets due to
their unique characteristics. To establish a robust baseline,
we focused on fundamental augmentations, such as ran-
dom flipping and random resized cropping, which avoid
dataset-specific biases and provide general benefits across
all datasets. While we agree that exploring more advanced
augmentations could enhance performance, applying them
across multiple datasets can be complex and may result in
inconsistent outcomes. We suggest investigating the impact
of specific augmentations when fine-tuning models on indi-
vidual datasets for more targeted improvements.

D. Architecture difference of SSL methods
Table 5 presents a comparative analysis of various SSL

methods, focusing specifically on their architectural differ-
ences. SSL techniques within identical categories tend to
exhibit similarities in their loss functions and overall archi-
tectural designs. This observation encourages an analysis
of our results based on categorical groupings. Nevertheless,
variations in SSL approaches within the same category may
lead to discrepancies in outcomes and the selection of op-

Table 4. Comparison of SSL methods and Triplet Loss on R-SF
dataset

R-SF
R@1 R@5 R@10

Our One-Stage Methods with ResNet50-GeM
Triplet Loss (Baseline) 44.6 58.0 63.2
SimCLR 46.8 64.0 69.1
MoCov2 40.5 55.2 59.7
BYOL 25.1 38.1 46.0
SimSiam 25.3 39.3 44.6
Barlow Twins 22.4 36.0 41.6
VICReg 22.2 36.5 43.0

Our One-Stage Methods with DeiT-S
Triplet Loss (Baseline) 39.1 57.0 63.0
SimCLR 50.2 65.1 70.6
MoCov2 35.3 53.8 58.2
BYOL 17.6 29.3 36.0
SimSiam 15.7 28.8 33.6
Barlow Twins 36.5 52.8 58.0
VICReg 29.1 44.0 51.3

timal hyperparameters. For SimSiam [15], we specifically
note that we remove the BN layer for the output of the pro-
jection head since it does not converge with that BN layer.

E. Extended results of our two-stage methods

In Table 6, we show the extended results of the compar-
ison between our two-stage methods with R2Former [56]
for reranking and state-of-the-art two-stage methods (SP-
SuperGlue [38], Patch-NetVLAD [25], TransVPR [47], and
R2Former [56]). For better readability, we concatenate the
one-stage results (Table 1) at the bottom of the table.

When analyzing different SSL training strategies, it be-
comes evident that two-stage methods, particularly those
rooted in contrastive learning and information maximiza-
tion, demonstrate superior performance compared to self-
distillation approaches. This trend aligns with observations
made in one-stage results, underscoring the inherited high
geo-specific representation quality from the first-stage re-
sults. Notably, among these strategies, SimCLR and Bar-
low Twins stand out, delivering higher overall performance
metrics than their counterparts.

In our comparative analysis of two-stage methods
against leading approaches, we observed that SimCLR and
Barlow Twins generally match or exceed the performance
of existing state-of-the-art methods across most datasets,
with the notable exception of the Tokyo24/7 dataset. De-
spite this, our enhancements to the original R2Former
model yield only marginal gains, even though our initial-
stage results surpass those of the original R2Former. To an-
alyze the training bottleneck in two-stage methods, we con-
ducted a detailed examination of the MSLS dataset’s valida-
tion performance across various training stages, as outlined
in Table 7.



Table 5. Comparison of architecture for selected SSL methods. ME: Momentum target encoder. SG: Stop gradient for target encoder. PR:
Predictor to infer target (teacher) embeddings based on online (student) embeddings. BN: Batch normalization in the projector or predictor.
LP: Large dimensionality of projected embeddings.

Categories Methods ME SG PR BN LP Loss Function

Contrastive
Learning

SimCLR [13] InfoNCE Loss
MoCov2 [14] ✓ InfoNCE Loss

Self-distillation
Learning

BYOL [23] ✓ ✓ ✓ ✓ Embedding Prediction Loss
SimSiam [15] ✓ ✓ ✓ Embedding Prediction Loss

Information
Maximization

Barlow Twins [54] ✓ ✓ Cross-correlation Loss
VICReg [6] ✓ ✓ VIC Regularization Loss

We pay particular attention to the R@1 metric. In the
global-retrieval-training phase, the performance ranking is
as follows: SimCLR > Barlow Twins> R2Former > Mo-
Cov2 > VICReg > BYOL > SimSiam. However, this
order shifts in the reranking-training phase to: SimCLR
> VICReg > R2Former > Barlow Twins > MoCov2 >
SimSiam > BYOL. This reshuffling illustrates a complex
relationship between the outcomes of the global-retrieval-
training and reranking-training stages, indicating that supe-
rior performance in the former does not automatically trans-
late to enhanced results in the latter.

Additionally, our findings reveal that post-finetuning,
most variants reach a plateau in MSLS validation perfor-
mance, with R@1 nearing 90%, R@5 around 95%, and
R@10 close to 96%. This saturation suggests a limit to the
efficacy of the current fine-tuning approaches, highlighting
the need for better strategies to push these metrics further.

F. Data Source of State-of-the-art VG Results
In presenting the state-of-the-art results in VG meth-

ods as detailed in Table 1 and Table 6, we primarily draw
upon data from several key research papers: R2Former
[56], TransVPR [47], Patch-NetVLAD [25], and GCL [31].
When considering the NetVLAD [4] result, it is pertinent
to acknowledge the variety of results yielded by different
reproductions. For the purposes of this study, we refer to
the results as documented by R2Former [56]. However, it
is notable that the results for the Nordland datasets and the
dimension of the feature are not included in the paper, a gap
attributed to the lack of clarity regarding the source of their
reproduction. For the results of R2Former without rerank-
ing part, we download the model provided by the authors
and evaluate it across VG datasets.

G. Preprocessing for different datasets
In the inference stage, due to the potential variability in

the input images, preprocessing becomes an essential step.
Our one-stage methods, as outlined in Table 1, predom-
inantly utilize resizing as a key preprocessing technique.

This ensures that the dimensions of the input images align
with those used during training. However, an exception is
noted for the Tokyo24/7 dataset. Here, standard resizing
procedures would alter the aspect ratios of the query im-
ages, potentially degrading performance. To address this,
we adopt the single query preprocessing approach, as de-
scribed in [9], specifically for the preprocessing of query
images.

H. Visualization results
In Fig. 4 - 7, we present a comparative analysis of the

top-5 retrieved images from the MSLS validation dataset,
using ResNet50-GeM models trained via different self-
supervised learning (SSL) strategies. This qualitative as-
sessment specifically addresses challenges such as illumina-
tion change, seasonal change, viewpoint change, and occlu-
sion. Our findings reveal that SimCLR, MoCov2, and Bar-
low Twins consistently outperform other methods in tack-
ling these challenges, aligning with our quantitative results.

Notably, we observe that BYOL and SimSiam produce
irrelevant outputs when confronted with changes in view-
point and occlusion. This tendency may explain their lower
recall performance, suggesting a deficiency in learning in-
variance against occlusion and viewpoint alteration. This
insight is crucial as it highlights potential areas for refine-
ment in these models, specifically in enhancing their robust-
ness to such environmental and perspective shifts.



Table 6. Comparison of state-of-the-art VG methods with our results on large-scale VG datasets. Our models were trained in the MSLS
dataset. For the performance in the urban environment (Pitts30k and Tokyo24/7), we further finetuned our models in the Pitts30k dataset.
The best results of one-stage and two-stage methods are with bold text separately, and the second and third best are underlined. ∗ shows
the performance of the first stage without reranking. † shows only the dimensionality of global embeddings but excludes local embeddings.

Dg
MSLS Val MSLS Challenge Pitts30k Tokyo24/7 Nordland

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Two-Stage Methods
SP-SuperGlue [38] - 78.1 81.9 84.3 50.6 56.9 58.3 87.2 94.8 96.4 88.2 90.2 90.2 29.1 33.5 34.3
Patch-NetVLAD [25] 4096† 79.5 86.2 87.7 48.1 57.6 60.5 88.7 94.5 95.9 86.0 88.6 90.5 44.9 50.2 52.2
TransVPR [47] 256† 86.8 91.2 92.4 63.9 74.0 77.5 89.0 94.9 96.2 79.0 82.2 85.1 58.8 75.0 78.7
R2Former [56] 256† 89.7 95.0 96.2 73.0 85.9 88.8 91.1 95.2 96.3 88.6 91.4 91.7 60.6 66.8 68.7

Our Two-Stage Methods with R2Former
SimCLR 256† 90.3 95.0 95.4 73.2 85.6 88.1 90.5 95.3 96.4 81.9 87.3 89.5 48.2 54.3 56.3
MoCov2 256† 87.4 93.1 94.1 69.3 84.2 87.0 89.1 94.9 96.1 74.6 82.2 84.8 38.7 47.2 50.0
BYOL 256† 87.2 92.4 93.4 69.1 82.7 84.7 88.3 94.4 95.7 78.1 83.8 86.3 31.1 35.7 37.3
SimSiam 256† 86.2 94.2 95.1 69.3 82.5 85.4 87.9 94.1 95.7 78.7 83.5 84.8 45.0 50.6 52.5
Barlow Twins 256† 89.1 95.1 95.9 73.5 86.9 88.9 89.3 94.6 96.3 81.9 87.0 89.8 57.1 65.6 68.3
VICReg 256† 89.7 94.3 96.1 72.6 85.1 88.1 89.4 94.7 96.2 77.5 85.1 87.0 46.8 55.1 57.9

One-Stage Methods
NetVLAD [4] - 60.8 74.3 79.5 35.1 47.4 51.7 81.9 91.2 93.7 64.8 78.4 81.6 - - -
SFRS [22] 4096 69.2 80.3 83.1 41.5 52.0 56.3 89.4 94.7 95.9 85.4 91.1 93.3 18.8 32.8 39.8
TransVPR∗ [47] 256 70.8 85.1 89.6 48.0 67.1 73.6 73.8 88.1 91.9 - - - 15.9 38.6 49.4
R2Former∗ [56] 256 79.3 90.5 92.7 54.9 75.1 79.6 72.9 88.5 92.6 43.5 65.7 72.4 21.4 33.7 41.0
GCL-ResNet50-GeM [31] 1024 74.6 84.7 88.1 52.9 65.7 71.9 79.9 90.0 92.8 58.7 71.1 76.8 - - -
GCL-ResNeXt-GeM [31] 1024 80.9 90.7 92.6 62.3 76.2 81.1 79.2 90.4 93.2 58.1 74.3 78.1 - - -

Our One-Stage Methods with ResNet50-GeM
SimCLR 1024 84.2 92.2 94.2 63.1 78.9 83.6 82.8 91.9 94.6 54.6 74.9 81.9 39.9 56.4 63.9
MoCov2 1024 81.5 90.5 92.8 59.0 73.8 79.2 82.6 92.4 95.1 51.4 68.3 76.5 28.0 42.7 50.1
BYOL 1024 72.7 85.5 87.7 50.4 66.4 71.4 80.2 91.5 94.4 44.8 63.8 70.8 10.6 18.5 23.5
SimSiam 1024 75.0 85.8 88.6 52.1 67.0 72.2 78.6 89.8 92.7 51.1 67.6 71.4 12.5 21.5 27.0
Barlow Twins 1024 79.5 89.5 91.9 59.2 74.2 79.1 80.8 91.7 94.2 45.7 61.9 70.8 18.5 30.5 38.0
VICReg 1024 77.4 89.3 91.2 58.0 74.1 79.0 80.2 91.3 94.1 50.2 65.4 74.3 14.9 25.1 31.3

Our One-Stage Methods with DeiT-S
SimCLR 256 81.1 91.1 93.1 58.9 77.1 82.6 84.7 93.9 96.0 59.4 76.2 80.0 24.9 38.9 46.1
MoCov2 256 76.1 88.5 91.1 56.8 75.2 78.7 80.8 92.4 95.0 50.8 69.8 77.1 15.4 26.4 33.0
BYOL 256 58.2 75.3 79.6 37.7 54.0 60.4 76.6 89.4 92.9 43.2 62.2 68.6 4.1 7.9 10.6
SimSiam 256 56.2 76.2 80.1 35.3 52.3 58.7 79.7 91.0 93.6 47.3 63.8 74.0 6.2 11.5 15.4
Barlow Twins 256 79.7 91.4 93.1 59.1 76.1 81.5 82.6 92.1 95.0 58.4 75.2 80.6 28.1 43.3 51.1
VICReg 256 75.8 89.5 91.9 56.9 74.0 78.2 81.7 92.3 95.2 51.7 66.7 74.6 19.3 32.1 39.6

Table 7. Comparison of validation performance in MSLS dataset for the different training stages of our two-stage methods.

R2Former [56] SimCLR MoCov2 BYOL SimSiam Barlow Twins VICReg
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Global Retrieval Training
79.3 90.8 92.6 81.1 91.1 93.1 76.1 88.5 91.1 58.2 75.3 79.6 56.2 76.2 80.1 79.7 91.4 93.1 75.8 89.5 91.9

Reranking Training
88.4 93.4 94.9 89.2 94.3 95.4 86.8 93.1 93.9 81.2 86.2 87.4 83.0 87.3 88.8 88.2 92.7 93.6 88.5 92.7 93.8

End-to-end Finetuning
89.7 95.0 96.2 90.3 95.0 95.4 87.4 93.1 94.1 87.2 92.4 93.4 86.2 94.2 95.1 89.1 95.1 95.9 89.7 94.3 96.1



Figure 4. Visualization of top-5 retrieved candidates for illumination change across different SSL training strategies



Figure 5. Visualization of top-5 retrieved candidates for season change across different SSL training strategies



Figure 6. Visualization of top-5 retrieved candidates for viewpoint change across different SSL training strategies



Figure 7. Visualization of top-5 retrieved candidates for occlusion across different SSL training strategies
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