
Supplementary materials of VipDiff: Towards Coherent and Diverse Video
Inpainting via Training-free Denoising Diffusion Models

This is the supplementary material of our VipDiff, the
following contents are included,

• Comparisons on video results with SOTA methods.

• More ablation studies on evaluating our VipDiff.

• Video results on demonstrating the generalization ca-
pability of our VipDiff.

1. Video Comparison Results
We present video comparisons results with three SOTA

video inpainting methods, namely E2FGVI [4], FGT [6],
ECFVI [3] and ProPainter [7]. The video results are shown
in the .mp4 file named ’Comparisons with SOTA.mp4’.
We have listed the video inpainting results for 4 different
videos, with 3 videos on object-shaped masks and 1 video
on stationery masks. The total video lasts about 29 seconds.
Figure. 3 showed a screen shot of our video results, for each
video, we first present a static zoom in views (Fig.3) for
each methods with 3 seconds, and then followed by the
videos. In the video results, we also present 2 different
video inpainting samples generated by our VipDiff. Read-
ers can stop at one specific frame for more detailed compar-
isons in need.

As we can see from the video results (in file ’Compar-
isons with SOTA.mp4’), our VipDiff is capable of gener-
ating stable and temporal-coherent video inpainting results,
and much better visual quality over the existing state-of-the-
art video inpainting methods. In addition, we also present
two different video inpainting samples for each video, both
of the samples are temporal coherent, which shows the di-
verse generalization ability of our VipDiff.

2. More Ablation Studies
We present more ablation studies in the .mp4 file named

’More ablation study.mp4’. We answer two questions here:
1) why do we need the reverse noise optimization pro-
cess, can we simply trust the result generated by LDM
ŷk = ϵdθ(z, t, x̃

k
0) with pixel propagated prior input x̃k

0 as
condition? One reason is that directly propagating pix-
els would cause color discrepancy issues along the bound-
ary areas (check the beginning frames in the video file

Figure 1. Screenshot of the ablation study.

’More ablation study.mp4’), even we adopt error compen-
sation model provide by ECFVI [3], see Fig.1 top right case
as an example (Pixel propagation conditioned LDM + with-
out noise optimization), even LDM with pixel propagated
prior x̃k

0 as condition, it has no strength for reducing the
brightness issues caused through pixel propagation steps.
Although these issue may not affect the whole video, it still
reduces the overall video quality. While our VipDiff takes
the original masked image xk

0 as input, using x̃k
0 as an guid-

ance to optimize the random sampled Gaussian noise z, it
trust the original masked image, so the input would not con-
tain the incorrect color pixels, which hepls reduce the color
discrepancy issues.And the other reason is that our VipDiff
can be applied to other unconditional image-level diffusion
models for optimizing the noise to generate coherent-video
inpainting results (Check next section).
2) Why do not optimize every frame? We observe that even
with iterative pixel propagation processes, optimize every
frame would result in slightly frame blinking issues, we
believe generating results frame by frame without mixing
or blending pixel information from other reference frames
would inevitably face this issues, that’s why we propagate
the generated results to to other frames and iteratively doing
the pixel propagation and reverse noise optimization. The
other reason is that optimizing every frame costs much more
time than our current framework, since most of the gener-
ated results can be transferred to neighbouring frames by
optical flows, to reduce the overall computational burdens.
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Figure 2. Visual results of adopting FGT’ modules. From top row
to the bottom: Input, results of FGT, Ours+FGT.

Adopt FGT’s flow propagation modules. We conducted
experiments by using the flow completion and pixel propa-
gation modules from FGT [6] (shown in Fig 2, Ours+FGT).
Our method successfully generates sharp and temporal-
consistent results when combined with FGT’s flow mod-
ules, reaffirming its generalization capabilities. We ob-
served minor issues such as light jittering and slight blurri-
ness after applying them, potentially stemming from their
utilization of Poisson blending during pixel propagation.
Moreover, FGT exhibits speed improvements, our average
processing time can be reduced to 2.74s per image. This
outcome highlights the feasibility of our method when em-
ployed with different flow modules.

3. Generalization Capability
Our VipDiff is not restricted to specific diffusion mod-

els, it can be embedded to other unconditional image gen-
eration diffusion models for generating temporal-coherent
video inpainting results. We choose two variants of dif-
fusion model, DDIM [5] and DDNM [1] with image-level
diffusion model pretrained by [2]. The video results are
shown in .mp4 file named ’Generalization Capability.mp4’.
For DDIM and DDNM, we present two video inpainting of
each methods with different sampled noises, Fig 4 shows as
screenshot of the video results. One can see from the video,
that for those image-level diffusion models, our VipDiff is
able to generate temporal-coherent and high-fidelity video
inpainting results for all of them, which proves the general-
ization capability of our training-free framework.
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Figure 3. Screenshot of the video results with other competing methods. In ’Comparisons with SOTA.mp4’, we also present two different
video inpainting results by our VipDiff, demonstrating its diverse generalization ability.

Figure 4. Screenshot of the video generation results of our VipDiff applied with other diffusion models.
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