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A. Attack and defense models
Attack model. We follow the attack model in previ-

ous works [1, 4, 11, 13]. Specifically, the attacker controls a
subset of f malicious clients within the FL system. These
clients can either be fake clients injected into the system
by the attacker or genuine clients that have been compro-
mised. The goal of the attacker is to degrade the overall
performance of the global model in FL. The attacker has
full knowledge of all benign updates in each training round.
For additional background knowledge of the attacker, we
follow the same settings of the proposed attack works. The
malicious clients need not follow the prescribed local train-
ing protocol of FL and may send arbitrary local model up-
dates to the server. Let B denote the set of benign clients in
the system so that B ⊂ N . Under the Byzantine attack, the
local model update of a client i ∈ N can be represented as

∆i =

{
∆i, if i ∈ B
βi, if i /∈ B

(1)

where βi ∈ Rd represents an arbitrary model depending on
the specific attack method.

Defense goal. Like previous works [3,4,13], we assume
the server to be the defender who can deploy a robust aggre-
gation rule, denoted by F , to mitigate the negative impact of
malicious local models on the global model. The server has
full access to the global model and local model updates in
each training round, but it does not have access to the local
training data of clients. We assume the server does not know
the number of malicious clients unless explicitly specified.
In addition, we assume that clients’ submissions are made
anonymously so that the server cannot track clients’ actions.

B. Experimental settings
We utilize six benchmark datasets of FL, including

MNIST [8], Fashion-MNIST [12], FEMNIST [2], CIFAR-
10 [7], CIFAR-100 [7], and Shakespeare [9] datasets, to

conduct the performance evaluation. The MNIST dataset
is composed of gray-scale images of size 28 × 28 pixels
for image classification tasks. It has 60,000 images for
training and 10,000 images for testing. Similar to MNIST,
Fashion-MNIST (FMNIST) dataset contains 70,000 28×28
grayscale images for 10 categories of fashion products. The
dataset is divided into 60,000 training images and 10,000
test images. For MNIST and FMNIST datasets, we evenly
split the training data over 6,000 clients so that the distri-
bution of private datasets on each client is IID. The Feder-
ated Extended MNIST (FEMNIST) dataset is a non-IID FL
dataset extended from MNIST. It consists of 805,263 im-
ages hand-written by 3,550 users for a total of 62 classes,
including 52 for upper and lower case characters and 10 for
digits. We subsample 5% of the original data following [2],
resulting in 1,827 clients with a total of 450,632 images.
The number of samples for each client ranges from 3 to 525.
The Shakespeare dataset is naturally a non-IID FL dataset
for the next character prediction tasks. Following [10], we
process the original data and result in a dataset consisting
of 37,784 samples from 715 clients.

The CIFAR-10 and CIFAR-100 datasest [7] is a col-
lection of 60,000 32×32 color images with 50,000 train-
ing samples and 10,000 testing samples. All images are
evenly distributed among 10/100 different classes, respec-
tively. We split the training dataset over 100 clients for IID
cases. For non-IID cases, we use Dirichlet distribution to
simulate the non-IID settings on CIFAR-10 and CIFAR-100
datasets, which is controlled by a non-IID degree hyperpa-
rameter α. The default value of α is set to 0.5 in our work.

For MNIST, FMNIST, and FEMNIST datasets, given
their identical image format and size, we use the same neu-
ral network architecture in [6]. Specifically, we use a CNN
model composed of two convolutional layers, each followed
by max-pooling and ReLU activation functions. Two linear
layers are utilized to map features to classes. For CIFAR-
10/100 datasets, we use ResNet-18 [5]. For the Shakespeare
dataset, we implement a Recurrent Neural Network (RNN)
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model following [10]. The RNN model takes a sequence
of characters as input and then uses an embedding layer to
convert each character into an 8-dimensional feature rep-
resentation. Subsequently, two Long Short-Term Memory
(LSTM) layers process these embedded characters, and a
final linear layer with the softmax activation is applied.

For all datasets except CIFAR-10/100, the server ran-
domly selects h = 100 clients per round to perform local
computations. While for CIFAR-10/100, we set h = 25.
We use SGD with momentum as the local solver, with the
decay ratio and momentum parameters set to 0.99 and 0.9,
respectively, for all datasets except for Shakespeare, where
it is set to 0.999 and 0.5, respectively. The learning rate
is set as η = 0.1 for all datasets except for Shakespeare,
where it is set to η = 1.0. By default, the filtering radius
is set as λm = λd = 1.0 for CIFAR-10/100. While for
other datasets, we set λm to 2.0. We define the sparsifica-
tion level (SL) to be 1 − k/d. A higher SL implies more
parameters are zeroed out. In our experiments, SL is set
as 0.3 for all datasets by default. We run each experiment
with three random seeds and report the average of the best
testing accuracies achieved in each individual training. The
experiments are conducted using PyTorch and executed on
NVIDIA RTX A6000 GPUs.

C. Evaluated attack methods
We consider eight attack methods including three naive

attack methods, and five SOTA attack methods to compre-
hensively evaluate our method.

• Random attack. The malicious clients send ran-
domized updates that follow a Gaussian distribution
N(µ, σ2Id). We set µ = (0, . . . , 0) ∈ Rd and σ = 0.5.

• Noise attack. The malicious clients perturb benign up-
dates by adding Gaussian noise used in random at-
tacks.

• Sign-flip attack. The malicious clients manipulate their
model updates by flipping the sign coordinately.

• Min-Max/Min-Sum attack [11]. The malicious model
updates are crafted in two steps. In the first step, the
attacker generates a malicious update by perturbing
the average of all benign updates. Then, for Min-
Max attack, the attacker optimizes the malicious up-
date so that its maximum Euclidean distance with
any benign update is upper-bounded by the maxi-
mum distance between any two benign updates, i.e.,
maxi,j∈H ∥∆i−∆j∥2. For Min-Sum attack, the mali-
cious update is optimized to ensure that the sum of its
distances with each benign update is upper-bounded by
the maximum total distance of a benign update among
other benign updates, i.e.,maxi∈H

∑
j∈H ∥∆i−∆j∥2.

We additionally test a stealthy version of Min-Sum at-
tack, where the distance of the malicious update from
any benign update is bounded by the minimum (rather
than maximum) total distance of benign updates. This
stealthy version is tested on all the datasets except for
MNIST. We follow [11] to keep the updates of all ma-
licious clients the same.

• AGR-tailored Trimmed-mean attack [11]. AGR-
tailored Trimmed-mean (TailoredTrmean) attack is de-
signed to attack the defense method Trmean proposed
in [14] by maximizing the Euclidean distance between
the aggregated result of simple average and Trmean,
respectively.

• Lie attack [1]. The malicious clients apply slight
changes to their local benign updates, making it hard
to be detected. Specifically, the malicious clients cal-
culate the element-wise mean µj and standard error σj

of all updates and generate the element of malicious
updates by (βi)j = µj − z × σj , where j ∈ [d]. The
scaling factor z is set to 0.5 for all experiments.

• ByzMean attack [13]. The ByzMean attack makes the
mean of updates arbitrary malicious updates. Specif-
ically, it divides malicious clients into two groups,
each with m1 and m2 clients, respectively. Clients
in the first group select any existing attack meth-
ods to generate their malicious updates, denoted as
βi,∀i∈[m1]. The clients in the second group generate
their malicious updates to make the average of all up-
dates exactly equal to the average of malicious up-
dates in [m1], which can be expressed as βi,∀i∈[m2] =
(n−m1)×βi,∀i∈[m1]−

∑n
i=f+1 ∆i

m2
assuming the first f up-

dates are malicious. We follow the same setting in
[13], where the Lie attack is selected as the base attack
method for the first group, and the size of two groups
is set as m1 = ⌊f/2⌋ and m2 = f −m1.

D. Additional experimental results
D.1. More results

In this section, we set the attack ratio to 25%, and for
FEMNIST and Shakeperare datasets, we set λd to 1.5. As
shown in Table 1, LASA demonstrates its robustness against
the naive and SOTA attack methods in IID settings, whereas
almost all other defense methods are vulnerable to at least
one attack method. Under no attack, LASA achieves a test
accuracy comparable to FedAvg on MNIST dataset. This
demonstrates the effectiveness of LASA in maintaining ac-
curacy, not just in adversarial environments, but also in be-
nign environments.

For MNIST dataset, LASA achieves the best perfor-
mance against naive attacks with the highest accuracy of
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Table 1. The main results for MNIST, FEMNIST, and Shakespeare are presented.

Datasets
(Model)

Defense
Methods

No
Attack

Naive Attacks State-of-the-art Attacks Average
w/ AttacksRandom Noise Sign-flip TailoredTrmean Min-Max Min-Sum Lie ByzMean

MNIST
(CNN)

FedAvg 97.85 19.28 32.25 96.89 11.01 94.16 94.22 96.86 10.24 56.36
TrMean 96.14 94.11 94.50 95.19 11.35 88.35 88.41 93.67 10.74 72.67
GeoMed 94.59 94.66 94.66 94.21 94.76 63.99 52.29 80.82 94.17 83.69

Multi-Krum 97.00 96.50 96.73 96.97 11.35 67.33 69.51 93.82 10.24 67.43
Bulyan 94.95 96.42 96.41 94.20 11.70 63.89 68.00 90.98 54.88 71.06

DnC 97.69 96.57 96.58 97.14 46.31 64.57 89.89 96.17 28.29 76.69
SignGuard 96.64 97.70 97.70 96.85 97.78 97.58 97.46 97.58 97.63 97.54
SparseFed 97.86 19.18 31.69 96.85 11.01 94.11 94.22 96.86 10.24 56.27

LASA (Ours) 97.35 97.96 98.27 97.26 97.94 97.93 97.94 97.54 97.94 97.85

FEMNIST
(CNN)

FedAvg 84.27 42.60 48.15 81.30 5.58 58.76 81.68 81.11 1.28 50.43
TrMean 82.23 78.26 78.81 79.13 5.70 29.80 76.72 75.79 5.73 53.12
GeoMed 75.57 75.48 75.47 71.67 76.19 68.27 28.13 22.56 74.32 61.01

Multi-Krum 82.85 76.13 76.48 80.00 5.58 25.83 77.25 74.91 6.48 52.58
Bulyan 77.10 81.68 81.65 73.50 5.97 19.17 60.55 58.98 18.02 49.94

DnC 83.89 75.41 76.08 80.96 63.93 66.60 80.37 78.97 22.84 68.52
SignGuard 83.06 83.75 83.75 79.43 83.80 83.80 82.59 82.58 83.78 82.68
SparseFed 84.27 42.24 48.07 81.29 5.58 60.06 81.71 81.05 1.28 50.41

LASA (Ours) 83.69 84.07 84.05 81.72 84.26 84.19 83.60 83.52 84.14 83.94

Shakespeare
(LSTM)

FedAvg 63.74 45.00 47.28 60.43 39.01 59.17 63.35 62.79 24.24 50.41
TrMean 63.15 59.09 59.43 59.83 42.23 57.54 62.60 61.86 37.38 54.75
GeoMed 57.63 57.67 57.67 52.55 57.89 57.72 57.89 56.24 56.28 57.24

Multi-Krum 62.26 61.55 61.73 59.11 35.11 54.30 62.09 58.34 23.16 52.92
Bulyan 60.89 62.73 62.76 58.05 49.39 54.61 60.71 59.11 52.90 57.41

DnC 64.67 61.38 61.47 60.80 59.32 61.10 64.70 62.30 56.18 60.65
SignGuard 63.65 65.26 65.26 59.84 64.76 64.76 60.83 62.35 64.76 61.97
SparseFed 63.72 44.49 47.24 60.40 39.24 59.84 63.31 62.77 24.27 50.69

LASA (Ours) 65.08 66.25 66.24 62.56 66.32 65.63 64.02 64.25 65.99 65.16

97.96% for Random attack, 98.27% for Noise attack, and
97.26% for Sign-Flip attack, outperforming all other de-
fense methods. In contrast, SignGuard, DnC and LASA can
effectively defend against TailoredTrmean and ByzMean
attacks. Under TailoredTrmean attack, LASA achieves
the highest accuracy of 97.94%, which is +0.17% and
+51.63% higher than SignGuard and DnC, respectively; un-
der ByzMean attacks, LASA achieves the highest accuracy
of 97.94%, which is 0.31% and +69.66% higher than Sign-
Guard and DnC, respectively.

Compared to FedAvg under no attack, we can see
that LASA can maintain the accuracy of FL in the be-
nign environment with only a -0.57% accuracy drop on
FEMNIST dataset and even a +1.34% accuracy increase
on Shakespeare dataset. We also observe that the per-
formance of classic robust aggregation rules, including
Trmean, GeoMed, Multi-Krum, and Bulyan, is poor on
non-IID datasets. For example, Trmean and Multi-Krum
completely failed against the ByzMean attack on FEM-
NIST dataset, yielding an accuracy of 5.73% and 6.48%,
respectively. As we discussed in the related works, in non-
IID settings, the divergence between benign model updates
will increase, making these classic methods hard to fil-
ter out malicious model updates. For FEMNIST dataset,
LASA outperforms all other defense methods. It achieves

an accuracy of 84.26% at best under TailoredTrmean at-
tack, which is identical to that of Mean under no attack.
In addition, LASA outperforms SignGuard more signifi-
cantly in non-IID settings, compared to their performance
in IID settings. Specifically on Shakespeare dataset, the
performance of SignGuard is not stable. For example,
under Sign-Flip attack, the accuracy of SignGuard drops
to 59.84%, while LASA achieves the highest accuracy of
62.56% (+2.72%). Under Min-Sum attack, SignGuard’s ac-
curacy drops to 60.83%, while LASA achieves an accuracy
of 64.017% (+3.19%), which is comparable to the best ac-
curacy achieved by DnC.

In a nutshell, the performance of LASA is not only man-
ifested in attack scenarios but also in the absence of any
attacks, which aligns with the design principles of LASA.
Moreover, LASA shows robustness to both IID and more
challenging non-IID cases. By adeptly integrating pre-
aggregation sparsification and layer-wise adaptive aggrega-
tion, LASA effectively mitigates the impact of updates that
diverge from others. The robustness of LASA, illustrated
by the above-mentioned results, emphasizes its potential as
a robust defense method in securing federated learning en-
vironments against a wide collection of attacks, ultimately
enhancing the reliability of federated learning systems.

3



76

78

80

82

84

86

FE
M

N
IS

T
A

cc
ur

ac
y 

(%
)

ByzMean TailoredTrmean Noise Min-Max Lie

SignGuard
DnC
Sparsefed
LASA (Ours)
Baseline

30 25 20 15 10 5
Attack Ratio (%)

30

40

50

60

70

Sh
ak

es
pe

ar
e

A
cc

ur
ac

y 
(%

)

30 25 20 15 10 5
Attack Ratio (%)

30 25 20 15 10 5
Attack Ratio (%)

30 25 20 15 10 5
Attack Ratio (%)

30 25 20 15 10 5
Attack Ratio (%)

SignGuard
DnC
SparseFed
LASA (Ours)
Baseline

Figure 1. Testing Accuracy of LASA, SignGuard, DnC and SparseFed under Various Attack Ratios in non-IID Settings.

D.2. More results under various attack ratios

We evaluate the performance of three SOTA defense
methods including DnC, SignGuard and SparseFed, and
our method LASA under different attack ratios on non-IID
datasets and report the results in Figure 1. Specifically, we
conduct experiments under one naive attack and four SOTA
attacks with the attack ratio varying from 5% to 30%. In
Figure 1, the Baseline represents the non-robust method
Mean under no attack. In general, DnC and SparseFed’s
accuracies increase as the attack ratio decreases, but they
suffer from significant accuracy degradation when the at-
tack ratio is high, especially under Byzmean and Tai-
loredTrmean attacks. For instance, on FEMNIST dataset,
even when the attack ratio is as low as 5%, SparseFed does
not improve the robustness, achieving an accuracy of 7.44%
under the ByzMean attack. Similarly, DnC struggles to de-
fend against ByzMean attack effectively until the attack ra-
tio is reduced to 10%, achieving a relatively low accuracy
of 79.09%. SignGuard outperforms DnC and SparseFed
significantly. However, under Byzmean, TailoredTrmean,
Noise, and Min-Max attacks, the accuracy of SignGuard
decreases as the attack ratio decreases. Compared to Sign-
Guard, our method LASA achieves a better and more stable
performance. As the attack ratio increases, LASA only has
a minor decrease in accuracy.

D.3. Impact of sparsification level

As we stated in Section 4.1, the optimal sparsification pa-
rameter k should balance the tradeoff between sparsification
error and robustness improvement. Here, we empirically

Table 2. Performance of LASA with Different Sparsification Lev-
els.

Att. Data.
Sparsification Level

0.1 0.3 0.5 0.7 0.9 0.95 0.99

B
yz

M
ea

n M 97.833 97.943 97.821 97.543 98.053 97.880 97.490
FM 87.820 87.647 87.943 87.867 87.803 87.740 86.437

FEM 84.143 84.138 84.137 84.118 83.834 83.489 81.120
Sha 66.024 65.990 65.842 65.409 64.355 63.055 60.463

M
in

-M
ax

M 97.310 97.930 97.493 97.307 97.557 96.950 97.593
FM 87.917 87.907 87.920 87.967 87.330 87.707 86.353

FEM 84.184 84.264 84.203 84.162 83.772 83.361 81.038
Sha 64.723 66.324 65.472 65.032 63.654 62.527 60.090

N
oi

se

M 98.223 98.270 98.320 97.643 98.050 97.923 97.800
FM 87.877 87.870 87.893 87.933 87.623 87.897 86.423

FEM 84.061 84.053 84.023 84.018 83.645 83.269 80.537
Sha 66.255 66.244 66.102 65.754 64.506 63.546 60.686

study the impact of different k on learning performance.
Recall that the SL is defined as 1 − k/d, hence, a smaller
k implies a higher SL and a heavier sparsification. We re-
port the performance of LASA under Noise, Min-Max, and
ByzMean attacks with SLs varying from 0.1 to 0.99 in Ta-
ble 2, where M, FM, FEM, and Sha represent MNIST, FM-
NIST, FEMNIST, and Shakespeare datasets, respectively.
The results demonstrate that there exists an optimal SL that
maximizes robustness and a very high SL may lead to a sig-
nificant accuracy drop. For example, as SL increases, the
accuracy of LASA on FMNIST dataset increases to 87.94%
and then decreases to 86.44% under ByzMean attack. This
occurs because the sparsification error overwhelms the ro-
bustness improvement when SL is too large. We also ob-
serve that the sensitivity of LASA on SL depends on both
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Table 3. Performance of LASA with Different Filtering Radius

Con. MNIST FMNIST FEMNIST

λd λm Noise ByzMean Noise ByzMean Noise ByzMean

1.0 1.0 97.963 97.803 87.950 87.887 83.922 84.158
1.0 1.5 97.883 97.843 88.023 87.720 83.946 84.209
1.0 2.0 98.270 97.943 87.870 87.647 84.007 84.119
1.0 4.0 91.743 97.840 77.400 77.930 69.408 84.048
1.5 2.0 97.927 98.023 87.937 87.640 84.053 84.138
2.0 2.0 97.593 97.487 87.950 84.000 84.136 77.399
3.0 2.0 97.883 66.897 87.917 67.250 84.225 28.300

the dataset and the attack method.

D.4. Impact of filtering radius

In this subsection, we study the performance of LASA
with different filtering radius λm and λd. A smaller λm or
λd indicates more stringent filtering and results in a smaller
benign set for aggregation. As shown in Table 3, there ex-
ist optimal λm and λd that balance the filtering intensity
and maximize the model accuracy. We also observe that
the effectiveness of Noise attack is marginally affected by
λd, as random noise perturbation does not change the sign
purity in expectation. For all datasets, the optimal λd un-
der Noise attack is 1.0 (note that for FEMNIST, the best
accuracy when λd = 3.0 is comparable to the accuracy
when λd = 1.0). However, as Noise attack adds Gaussian
noise to the model updates to increase their magnitude (in
L2 norm), the effectiveness of Noise attack is sensitive to
the values of λm. For different datasets, the optimal λm are
different. For the advanced ByzMean attack, its effective-
ness is marginally affected by λm, as the accuracy of LASA
does not change much when λm increases from 1.0 to 2.0.
This demonstrates that the magnitudes of malicious updates
generated by ByzMean attack are close to that of benign
models. In order to make the attack effective, ByzMean at-
tack mainly focuses on manipulating the model direction,
making it sensitive to the direction filtering radius λd: the
accuracy of LASA vibrates a lot as λd increases. Addition-
ally, both λm and λd should not be too large to compromise
the effectiveness of the filtering.

E. Computational cost of LASA

We evaluate the computational cost of LASA in compar-
ison to other methods. LASA incorporates pre-aggregation
sparsification, leading to a complexity of O(d log d) due to
the use of sorting algorithms like merge sort in the param-
eter space of local updates. Consequently, the worst-case
computational expense for LASA is O(nd log d). Despite
this, LASA’s computational burden is on par with other
methods such as Krum and Multi-Krum, which have a com-
plexity of O(dn2), and Trmean with O(dn log n).
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F. Proof
F.1. Proof preliminaries

Lemma 1. Given any two vectors a, b ∈ Rd,

2 ⟨a, b⟩ ≤ α ∥a∥2 + 1

α
∥b∥2 ,∀ α > 0.

Lemma 2. Given any two vectors a, b ∈ Rd,

∥a+ b∥2 ≤ (1 + δ) ∥a∥2 + (1 + δ−1) ∥b∥2 ,∀ δ > 0.

Lemma 3. Given arbitrary set of n vectors {ai}ni=1, ai ∈ Rd,∥∥∥∥∥
n∑

i=1

ai

∥∥∥∥∥
2

≤ n

n∑
i=1

∥ai∥2 .

Lemma 4. If the learning rate η ≤ 1/2τ , under Assumption 2 and 3, the local divergence of benign model updates are
bounded as follows:

1

|B|
∑
i∈B

E
∥∥∆i − ∆̄B

∥∥2 ≤ 2ν̄ + ζ̄ (2)

Proof. Given that ∆i = η
∑τ−1

s=0 g
s
i where η is the learning rate and gsi is the local stochastic gradient over the mini-batch s.

We have

1

|B|
∑
i∈B

E
∥∥∆i − ∆̄B

∥∥2 =
1

|B|
∑
i∈B

E

∥∥∥∥∥η
τ−1∑
s=0

gsi −
1

|B|
∑
i∈B

η

τ−1∑
s=0

gsi

∥∥∥∥∥
2

(3)

=
η2

|B|
∑
i∈B

E

∥∥∥∥∥
τ−1∑
s=0

gsi −
1

|B|
∑
i∈B

τ−1∑
s=0

gsi

∥∥∥∥∥
2

≤ τη2

|B|
∑
i∈B

τ−1∑
s=0

E

∥∥∥∥∥gsi − 1

|B|
∑
i∈B

gsi

∥∥∥∥∥
2

=
τη2

|B|
∑
i∈B

τ−1∑
s=0

E

∥∥∥∥∥(gsi −∇Li(θ
s
i )) +

(
∇LB(θ

s
i )−

1

|B|
∑
i∈B

gsi

)
+ (∇Li(θ

s
i )−∇LB(θ

s
i ))

∥∥∥∥∥
2

≤ 3τη2

|B|
∑
i∈B

τ−1∑
s=0

E ∥gsi −∇Li(θ
s
i ))∥

2︸ ︷︷ ︸
T1

+
3τη2

|B|
∑
i∈B

τ−1∑
s=0

E

∥∥∥∥∥∇LB(θ
s
i )−

1

|B|
∑
i∈B

gsi

∥∥∥∥∥
2

︸ ︷︷ ︸
T2

+
3τη2

|B|
∑
i∈B

τ−1∑
s=0

E ∥∇Li(θ
s
i )−∇LB(θ

s
i )∥

2

︸ ︷︷ ︸
T3

, (4)

where the first inequality follows Lemma 3, and the last second follows Lemma 2. For T1, with Assumption 2, we have

T1 ≤ ν̄. (5)

For T2, we have

T2 = E

∥∥∥∥∥∇LB(θ
s
i )−

1

|B|
∑
i∈B

gsi

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

|B|
∑
i∈B

(∇Li(θ
s
i )− gsi )

∥∥∥∥∥
2

≤ 1

|B|
∑
i∈B

E ∥∇Li(θ
s
i )− gsi ∥

2 ≤ ν̄, (6)

6



where the first inequality follows Lemma 3, and the last inequality follow Assumption 2. For T3, we have

T3 =
3τη2

|B|
∑
i∈B

τ−1∑
s=0

E ∥∇Li(θ
s
i )−∇LB(θ

s
i )∥

2 ≤ 3τη2
τ−1∑
s=0

ζ̄ = 3τ2η2ζ̄ (7)

by Assumption 3.
Plugging 5, 6, and 7 back to 4, with η ≤ 1/2τ , we have

1

|B|
∑
i∈B

E
∥∥∆i − ∆̄B

∥∥2 ≤ 2ν̄ + ζ̄.

This concludes the proof.
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F.2. Proof of Lemma 1

Proof. Recall that LASA denoted by F (·) : Rd×n → Rd is a layer-wise aggregation rule, i.e., there exist L real-valued
functions F1, . . . , FL : Rd×n → Rd such that for all ∆1, . . . ,∆n ∈ Rd, [F (∆1, . . . ,∆n)]l = Fl(∆

l
1, . . . ,∆

l
n). As LASA

utilizes layer-wise aggregation, we have

Fl(∆1, . . . ,∆n) =
1

|Sl|
∑
i∈Sl

∆̂l
i,

where ∆̂l
i be the l-th layer of the Top-k sparsified model ∆̂i and Sl is the indices set of benign updates in l-th layer shown in

Algorithm 1. We denote the indices set of Top-k parameters of a model/layer by K and the set of remaining parameters by
K−. Let [∆]K represent a sparsified model with only parameters in K (the rest are zero), then we have

E∥F (∆1, . . . ,∆n)− ∆̄B∥2 = E
L∑

l=1

∥∥Fl(∆1, . . . ,∆n)− ∆̄l
B
∥∥2

= E
L∑

l=1

∥∥∥∥∥∥ 1

|Sl|
∑
i∈Sl

∆̂l
i − ∆̄l

B

∥∥∥∥∥∥
2

= E
L∑

l=1

1

|Sl|2

∥∥∥∥∥∥
∑
i∈Sl

∆̂l
i − ∆̄l

B

∥∥∥∥∥∥
2

= E
L∑

l=1

1

|Sl|2

∥∥∥∥∥∥
∑
i∈Sl

[
∆̂l

i − ∆̄l
B

]
Kl

i

+
∑
i∈Sl

[
−∆̄l

B
]
Kl−

i

∥∥∥∥∥∥
2

= E
L∑

l=1

1

|Sl|2

∥∥∥∥∥∥
∑
i∈Sl

[
∆l

i − ∆̄l
B
]
Kl

i

+
∑
i∈Sl

[
−∆̄l

B
]
Kl−

i

∥∥∥∥∥∥
2

= E
L∑

l=1

1

|Sl|2


∥∥∥∥∥∥
∑
i∈Sl

[
∆l

i − ∆̄l
B
]
Kl

i

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
i∈Sl

[
∆̄l

B
]
Kl−

i

∥∥∥∥∥∥
2
 .

Let cli :=
∥∥∥[∆l

i − ∆̄l
B
]
Kl

i

∥∥∥2 /∥∥∆i − ∆̄B
∥∥2, blB :=

∥∥∥[∆̄l
B
]
Kl−

i

∥∥∥2 /∥∥∆̄B
∥∥2, C2

B :=
∥∥∆̄B

∥∥2, bB :=
∑L

l=1 b
l
B, and ci :=∑L

l=1 c
l
i, we have

E∥F (∆1, . . . ,∆n)− ∆̄B∥2 ≤ E
L∑

l=1

1

|Sl|
∑
i∈Sl

(∥∥∥[∆l
i − ∆̄l

B
]
Kl

i

∥∥∥2 + ∥∥∥[∆̄l
B
]
Kl−

i

∥∥∥2)

= E
L∑

l=1

1

|Sl|
∑
i∈Sl

(
cli
∥∥∆i − ∆̄B

∥∥2 + blB
∥∥∆̄B

∥∥2)

= E
L∑

l=1

1

|Sl|
∑
i∈Sl

(
cli
∥∥∆i − ∆̄B

∥∥2 + blBC
2
B

)
,

= E
L∑

l=1

1

|Sl|
∑
i∈Sl

cli
∥∥∆i − ∆̄B

∥∥2 + C2
B

L∑
l=1

blB

= E
1

|Sl|
∑
i∈Sl

ci
∥∥∆i − ∆̄B

∥∥2
︸ ︷︷ ︸

T1

+C2
BbB, (8)

8



where the first inequality follows Lemma 3. Note that ci =
∥∥∥[∆i − ∆̄B

]
Ki

∥∥∥2 / ∥∥∆i − ∆̄B
∥∥2 and bB =∥∥∥[∆̄B

]
K−

i

∥∥∥2 / ∥∥∆̄B
∥∥2.

Now we treat T1. If Sl ⊆ B, we have

T1 = E

 1

|Sl|
∑
i∈Sl

ci
∥∥∆i − ∆̄B

∥∥2 ≤ E

[
1

|Sl|
∑
i∈B

ci
∥∥∆i − ∆̄B

∥∥2] . (9)

If Sl ⊈ B, let P = Sl ∩ B, and R = Sl\B, let C2
M,i := ∥∆i∥2 ,∀i ∈ [N ]\B, then we have

T1 = E

 1

|Sl|
∑
i∈Sl

ci
∥∥∆i − ∆̄B

∥∥2 = E

[
1

|Sl|

(∑
i∈P

ci
∥∥∆i − ∆̄B

∥∥2 +∑
i∈R

ci
∥∥∆i − ∆̄B

∥∥2)]

≤ E

[
1

|Sl|
∑
i∈B

ci
∥∥∆i − ∆̄B

∥∥2]+ E

[
1

|Sl|
∑
i∈R

ci
∥∥∆i − ∆̄B

∥∥2]

≤ E

[
1

|Sl|
∑
i∈B

ci
∥∥∆i − ∆̄B

∥∥2]+ E

[
2

|Sl|
∑
i∈R

ci

(
∥∆i∥2 +

∥∥∆̄B
∥∥2)]

= E

[
1

|Sl|
∑
i∈B

ci
∥∥∆i − ∆̄B

∥∥2]+ E

[
2

|Sl|
∑
i∈R

ci
(
C2

M,i + C2
B
)]

, (10)

where the second inequality follows Lemma 2.
Due to the use of MZ-score, models in Sl are centered around the median within a λm (and λd) radius. If the radius parameter
λm or λd equals to zero, only the median model (based on l2-norm or PDP) will be selected for averaging. To maximize
benign model inclusion in averaging, the radius parameters λm and λd are set sufficiently large to ensure |Sl| ≥ n/2 − f .
More precisely, assume there exist two positive constants λ+

m and λ+
d , and if the radius parameters λm and λd in Algorithm

1 satisfy λm ≥ λ+
m, λd ≥ λ+

d , we have |Sl| ≥ n/2− f , ∀l ∈ [L]. Integrated with 9 and 10, we have

T1 ≤


2

n−2fE
∑

i∈B ci
∥∥∆i − ∆̄B

∥∥2 , if Sl ⊆ B

2
n−2fE

∑
i∈B ci

∥∥∆i − ∆̄B
∥∥2 + 4

n−2fE
∑

i∈R ci
(
C2

M,i + C2
B
)
, if Sl ⊈ B

≤ 2

n− 2f
E
∑
i∈B

ci
∥∥∆i − ∆̄B

∥∥2 + 4

n− 2f
E
∑
i∈R

ci
(
C2

M,i + C2
B
)

≤ 2cmax

n− 2f
E
∑
i∈B

∥∥∆i − ∆̄B
∥∥2 + 4cmax

n− 2f

∑
i∈R

(
C2

M,i + C2
B
)

=
2cmax|B|
n− 2f

1

|B|
∑
i∈B

E
∥∥∆i − ∆̄B

∥∥2 + 4cmax

n− 2f

∑
i∈R

(
C2

M,i + C2
B
)

=
2cmax(n− f)

n− 2f

1

|B|
∑
i∈B

E
∥∥∆i − ∆̄B

∥∥2 + 4cmax

n− 2f

∑
i∈R

(
C2

M,i + C2
B
)

≤ 2(n− f)

n− 2f
(2ν̄ + ζ̄)cmax +

4cmax

n− 2f

∑
i∈R

(
C2

M,i + C2
B
)

︸ ︷︷ ︸
T2

, (11)

where the second inequality holds as cmax := max{ci, i ∈ [N ]} and the last inequality follows Lemma 4.
Assume the benign model update is bounded as ∥∆i∥2 ≤ C2,∀i ∈ B, which can be achieved by using gradient clipping
in practice. Assume the malicious model update is bounded as ∥∆i∥2 ≤ C2

λm
,∀i ∈ [N ]\B, which depends on the specific

attack method and our magnitude-based filtering that is controlled by λm in Algorithm 1. We have

T2 =
∑
i∈R

(
C2

M,i + C2
B
)
≤ |R|

(
C2

λm
+ C2

)
≤ f

(
C2

λm
+ C2

)
, (12)

9



as |R| ≤ |[N ]\B| ≤ f . Therefore,

T1 ≤ cmax

(
2(n− f)

n− 2f
(2ν̄ + ζ̄) +

4f

n− 2f

(
C2

λm
+ C2

))
≤ ck

(
2(n− f)

n− 2f
(2ν̄ + ζ̄) +

4f

n− 2f

(
C2

λm
+ C2

))
≤ ck

(
1 +

f

n− 2f

)
(4ν̄ + 2ζ̄ + 4C2

λm
+ 4C2), (13)

if the sparsification applied to the local model update satisfies Assumption 4 so that cmax ≤ ck.
Summarizing to (8), we have

E∥F (∆1, . . . ,∆n)− ∆̄B∥2 ≤ T1 + C2
BbB

≤ T1 + bkC
2

≤ ck

(
1 +

f

n− 2f

)
(4ν̄ + 2ζ̄ + 4C2

λm
+ 4C2) + bkC

2 (14)

Discussion on the selection of k: When no sparsification is applied, i.e., when k = d, we have ck = 1 and bk = 0. In this
case, the robustness upper bound is

κ1 =

(
1 +

f

n− 2f

)(
4ν̄ + 2ζ̄ + 4C2

λm
+ 4C2

)
= O

(
1 +

f

n− 2f

)
.

When k = 0, we have ck = 0 and bk = 1, then
κ = C2,

which indicates the greatest sparsification error affecting robustness. When 0 < k < d, the robustness upper bound is

κ2 = (1 + ϵ)ck

(
1 +

f

n− 2f

)(
4ν̄ + 2ζ̄ + 4C2

λm
+ 4C2

)
= O

(
ck

(
1 +

f

n− 2f

))
if the sparsification parameter k is selected to satisfy that

Condition 1 : ck ≤ 1

1 + ϵ

and

Condition 2 :
bk
ck

≤ ϵ

(
4ν̄ + 2ζ̄ + 4C2

λm

C2
+ 4

)
with a positive constant ϵ. As (1 + ϵ)ck ≤ 1, we have

κ2 ≤ κ1,

which demonstrates the effectiveness of sparsification for improving robustness. This finally concludes the proof.
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F.3. Proof of Theorem 1

Proof. Given the update rule θt+1 = θt − ∆̄t = θt − η∆̃t where ∆̃t
i :=

∑τ−1
r=0 g

t,r
i = τdti, for ease of expression, we let

∆̃Bt := 1
|Bt|

∑
i∈Bt ∆̃t

i and ht
i := E[dti] = E

[
(1/τ)

∑r=τ−1
r=0 gt,ri

]
= (1/τ)

∑r=τ−1
r=0 ∇Li(θ

t,r
i ). With Assumption 1, we

have the following for all t ∈ [0, T − 1]:

LB(θ
t+1)− LB(θ

t) ≤ E
〈
∇LB(θ

t), θt+1 − θt
〉
+

µ

2
E
∥∥θt+1 − θt

∥∥2
= −ηE

〈
∇LB(θ

t), ∆̃t
〉
+

µη2

2
E
∥∥∥∆̃t

∥∥∥2
= −ηE

〈
∇LB(θ

t), ∆̃t + ∆̃Bt − ∆̃Bt

〉
+

µη2

2
E
∥∥∥∆̃t

∥∥∥2
= −ηE

〈
∇LB(θ

t), ∆̃Bt

〉
− ηE

〈
∇LB(θ

t), ∆̃t − ∆̃Bt

〉
+

µη2

2
E
∥∥∥∆̃t

∥∥∥2
= −ηE

〈
∇LB(θ

t),
1

|Bt|
∑
i∈Bt

∆̃t
i

〉
︸ ︷︷ ︸

T1

+ ηE
〈
∇LB(θ

t), ∆̃Bt − ∆̃t
〉

︸ ︷︷ ︸
T2

+
µη2

2
E
∥∥∥∆̃t

∥∥∥2︸ ︷︷ ︸
T3

. (15)

Now we treat T1, T2, and T3 respectively. We decompose T1 by

T1 = −ηE

〈
∇LB(θ

t),
1

|Bt|
∑
i∈Bt

∆̃t
i

〉
= −ητE

〈
∇LB(θ

t),
1

|Bt|
∑
i∈Bt

dti

〉
= −ητE

〈
∇LB(θ

t),
1

|B|
∑
i∈B

ht
i

〉

=
ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i −∇LB(θ

t)

∥∥∥∥∥
2

− ητ

2
E
∥∥∇LB(θ

t)
∥∥2 − ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i

∥∥∥∥∥
2

, (16)

where we use the fact that −2 ⟨a, b⟩ = ∥a− b∥2 − ∥a∥2 − ∥b∥2.

We decompose T2 as

T2 = ηE
〈
∇LB(θ

t), ∆̃Bt − ∆̃t
〉
≤ ηα

2
E
∥∥∇LB(θ

t)
∥∥2 + η

2α
E
∥∥∥∆̃t − ∆̃Bt

∥∥∥2 , (17)

where the first inequality follows Lemma 1 with a α > 0.

We decompose T3 as

T3 =
µη2

2
E
∥∥∥∆̃t

∥∥∥2 =
µη2

2
E
∥∥∥∆̃t + ∆̃Bt − ∆̃Bt

∥∥∥2
≤ µη2E

∥∥∥∆̃Bt

∥∥∥2 + µη2E
∥∥∥∆̃t − ∆̃Bt

∥∥∥2
= µη2E

∥∥∥∥∥ 1

|Bt|
∑
i∈Bt

∆̃t
i

∥∥∥∥∥
2

+ µη2E
∥∥∥∆̃t − ∆̃Bt

∥∥∥2
≤ µη2

|B|
∑
i∈B

E
∥∥∥∆̃t

i

∥∥∥2 + µη2E
∥∥∥∆̃t − ∆̃Bt

∥∥∥2 , (18)

where the first inequality follows Lemma 2 with δ = 1 and the second inequality follows Lemma 3.
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Combining 16, 17, 18 and, 15, we get

LB(θ
t+1)− LB(θ

t) ≤ ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i −∇LB(θ

t)

∥∥∥∥∥
2

− ητ

2
E
∥∥∇LB(θ

t)
∥∥2 − ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i

∥∥∥∥∥
2

+
ηα

2
E
∥∥∇LB(θ

t)
∥∥2 + η

2α
E
∥∥∥∆̃t − ∆̃Bt

∥∥∥2 + µη2

|B|
∑
i∈B

E
∥∥∥∆̃t

i

∥∥∥2 + µη2E
∥∥∥∆̃t − ∆̃Bt

∥∥∥2
= −

(ητ
2

− ηα

2

)
E
∥∥∇LB(θ

t)
∥∥2 + ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i −∇LB(θ

t)

∥∥∥∥∥
2

+
(
µη2 +

η

2α

)
E
∥∥∥∆̃t − ∆̃Bt

∥∥∥2 − ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i

∥∥∥∥∥
2

+
µη2

|B|
∑
i∈B

E
∥∥∥∆̃t

i

∥∥∥2
= −

(ητ
2

− ηα

2

)
E
∥∥∇LB(θ

t)
∥∥2 + ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i −∇LB(θ

t)

∥∥∥∥∥
2

+
(
µη2 +

η

2α

)
E
∥∥∥∆̃t − ∆̃Bt

∥∥∥2︸ ︷︷ ︸
T4

−ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i

∥∥∥∥∥
2

+
µη2

|B|
∑
i∈B

E
∥∥∥∆̃t

i

∥∥∥2 . (19)

T4 can be decomposed as

T4 =
(
µη2 +

η

2α

)
E
∥∥∥∆̃t − ∆̃Bt

∥∥∥2 ≤ κ
(
µη2 +

η

2α

)
(20)

where the first inequality holds as LASA is κ-robust aggregation rule with κ.

Plugging 20 back to 19, we have

LB(θ
t+1)− LB(θ

t) ≤ −
(ητ

2
− ηα

2

)
E
∥∥∇LB(θ

t)
∥∥2 + ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i −∇LB(θ

t)

∥∥∥∥∥
2

+ κ
(
µη2 +

η

2α

)
− ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i

∥∥∥∥∥
2

+
µη2

|B|
∑
i∈B

E
∥∥∥∆̃t

i

∥∥∥2
= −

(ητ
2

− ηα

2

)
E
∥∥∇LB(θ

t)
∥∥2 + ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i −∇LB(θ

t)

∥∥∥∥∥
2

+ κ
(
µη2 +

η

2α

)
+ µη2

1

|B|
∑
i∈B

E
∥∥∥∆̃t

i

∥∥∥2︸ ︷︷ ︸
T5

−ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i

∥∥∥∥∥
2

(21)
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T5 can be charcterized as

T5 =
1

|B|
∑
i∈B

E
∥∥∥∆̃t

i

∥∥∥2 =
τ2

|B|
∑
i∈B

E
∥∥dti∥∥2 =

τ2

|B|
∑
i∈B

(
E
∥∥dti − ht

i

∥∥2 + E
∥∥ht

i

∥∥2)

=
τ2

|B|
∑
i∈B

E

∥∥∥∥∥1τ
τ−1∑
s=0

(
gt,si −∇Li(θ

t,s
i )
)∥∥∥∥∥

2

+ E
∥∥ht

i

∥∥2
≤ τ2

|B|
∑
i∈B

(
1

τ

τ−1∑
s=0

E
∥∥gt,si −∇Li(θ

t,s
i )
∥∥2 + E

∥∥ht
i

∥∥2)

≤ τ2

|B|
∑
i∈B

(
1

τ

τ−1∑
s=0

ν2i + E
∥∥ht

i

∥∥2)

=
τ2

|B|
∑
i∈B

(
ν2i + E

∥∥ht
i

∥∥2) , (22)

where the first inequality follows Lemma 3 and the second inequality follows Assumption 2.

Plugging 22 back to 21, we have

LB(θ
t+1)− LB(θ

t) ≤ −
(ητ

2
− ηα

2

)
E
∥∥∇LB(θ

t)
∥∥2 + ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i −∇LB(θ

t)

∥∥∥∥∥
2

− ητ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i

∥∥∥∥∥
2

+
µη2τ2

|B|
∑
i∈B

(
ν2i + E

∥∥ht
i

∥∥2)+ κ
(
µη2 +

η

2α

)

= −
(ητ

2
− ηα

2

)
E
∥∥∇LB(θ

t)
∥∥2 + η2τ

2
E

∥∥∥∥∥ 1

|B|
∑
i∈B

ht
i −∇LB(θ

t)

∥∥∥∥∥
2

+
µη2τ2

|B|
∑
i∈B

E
∥∥ht

i

∥∥2
+ µητ2ν̄2 + κ

(
µη2 +

η

2α

)
(23)

≤ −
(ητ

2
− ηα

2

)
E
∥∥∇LB(θ

t)
∥∥2 + ητ

2

1

|B|
∑
i∈B

1

τ

τ−1∑
r=0

E
∥∥∇Li(θ

t,r
i )−∇Li(θ

t)
∥∥2

+
µη2τ2

|B|
∑
i∈B

(
2E
∥∥ht

i −∇Li(θ
t)
∥∥2 + 2

|B|
∑
i∈B

E
∥∥∇Li(θ

t)
∥∥2)+ µη2τ2ν̄2 + κ

(
µη2 +

η

2α

)
≤ −

(ητ
2

− ηα

2

)
E
∥∥∇LB(θ

t)
∥∥2 + ητ

2

1

|B|
∑
i∈B

µ2

τ

τ−1∑
r=0

E
∥∥θt,ri − θt

∥∥2 + µη2τ2

|B|
∑
i∈B

µ2

τ

τ−1∑
r=0

2E
∥∥θt,ri − θt

∥∥2
+

4µη2τ2

|B|
∑
i∈B

1

|B|
∑
i∈B

E(ζ̄ +
∥∥∇LB(θ

t)
∥∥2) + µη2τ2ν̄2 + κ

(
µη2 +

η

2α

)
=
[
−
(ητ

2
− ηα

2

)
+ 4µη2τ2

]
E
∥∥∇LB(θ

t)
∥∥2 + (ηµ2

2
+ 2η2τµ3

) τ−1∑
r=0

1

|B|
∑
i∈B

E
∥∥θt,ri − θt

∥∥2
︸ ︷︷ ︸

T6

+ 4µη2τ2ζ̄ + µη2τ2ν̄2 + κ
(
µη2 +

η

2α

)
(24)

where the second inequality follows Lemma 2 and the third inequality follow Assumption 1.
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Now we treat T6 as

T6 =
1

|B|
∑
i∈B

E
∥∥θt,ri − θt

∥∥2 =
1

|B|
∑
i∈B

E
∥∥∥θt,r−1

i − θt − ηgt,s−1
i

∥∥∥2
=

1

|B|
∑
i∈B

E
∥∥∥θt,r−1

i − θt − ηgt,s−1
i + η∇Li(θ

t,s−1)− η∇Li(θ
t,s−1) + η∇Li(θ

t)− η∇Li(θ
t)
∥∥∥2

=
1

|B|
∑
i∈B

E
∥∥∥θt,r−1

i − θt − η∇Li(θ
t,s−1) + η∇Li(θ

t)− η∇Li(θ
t)
∥∥∥2 + η2

|B|
∑
i∈B

E
∥∥∥gt,s−1

i −∇Li(θ
t,s−1)

∥∥∥2
≤
(
1 +

1

2τ − 1

)
1

|B|
∑
i∈B

E
∥∥∥θt,r−1

i − θt
∥∥∥2 + 2τη2

|B|
∑
i∈B

∥∥∇Li(θ
t,s−1) +∇Li(θ

t)−∇Li(θ
t)
∥∥2 + η2ν̄

≤
(
1 +

1

2τ − 1

)
1

|B|
∑
i∈B

E
∥∥∥θt,r−1

i − θt
∥∥∥2 + 4τη2

|B|
∑
i∈B

∥∥∇Li(θ
t,s−1)−∇Li(θ

t)
∥∥2 + 4τη2

|B|
∑
i∈B

∥∥∇Li(θ
t)
∥∥2 + η2ν̄

≤
(
1 +

1

2τ − 1

)
1

|B|
∑
i∈B

E
∥∥∥θt,r−1

i − θt
∥∥∥2 + 4τµ2η2

|B|
∑
i∈B

∥∥∥θt,r−1
i − θt

∥∥∥2 + 4τη2

|B|
∑
i∈B

∥∥∇Li(θ
t)−∇LB(θ

t) +∇LB(θ
t)
∥∥2 + η2ν̄

≤
(
1 +

1

2τ − 1
+ 4τµ2η2

)
1

|B|
∑
i∈B

E
∥∥∥θt,r−1

i − θt
∥∥∥2 + 8τη2

|B|
∑
i∈B

∥∥∇LB(θ
t)
∥∥2 + 8τ ζ̄η2 + η2ν̄

≤
(
1 +

1

τ − 1

)
1

|B|
∑
i∈B

E
∥∥∥θt,r−1

i − θt
∥∥∥2 + 8τη2

|B|
∑
i∈B

∥∥∇LB(θ
t)
∥∥2 + 8τ ζ̄η2 + η2ν̄, (25)

where the first and second inequality follows Lemma 2 with δ = 2τ and δ = 1, respectively. The third inequality follows
Assumption 1, and the last inequality holds if η ≤ 1/3τµ. Consequently, we have

T6 =
1

|B|
∑
i∈B

E
∥∥θt,ri − θt

∥∥2 ≤
s−1∑
h=0

(
1 +

1

τ − 1

)h [
8τη2

∥∥∇LB(θ
t)
∥∥2 + 8τ ζ̄η2 + η2ν̄

]
≤ (τ − 1)

[(
1 +

1

τ − 1

)τ

− 1

]
×
[
8τη2

∥∥∇LB(θ
t)
∥∥2 + 8τ ζ̄η2 + η2ν̄

]
≤ 32τ2η2

∥∥∇LB(θ
t)
∥∥2 + 32τ2ζ̄η2 + 4τη2ν̄, (26)

where the last inequality results from the fact that
(
1 + 1

τ−1

)t
≤ 5 when τ > 1.

Plugging 26 back to 24, we have

LB(θ
t+1)− LB(θ

t) ≤
[
−
(ητ

2
− ηα

2

)
+ 4µη2τ2

]
E
∥∥∇LB(θ

t)
∥∥2 + 4µη2τ2ζ̄ + µη2τ2ν̄2 + κ

(
µη2 +

η

2α

)
+

(
ηµ2

2
+ 2η2τµ3

) τ−1∑
r=0

[
32τ2η2

∥∥∇LB(θ
t)
∥∥2 + 32τ2ζ̄η2 + 4τη2ν̄

]
=
[
−
(ητ

2
− ηα

2

)
+ 4µη2τ2

]
E
∥∥∇LB(θ

t)
∥∥2 + 4µη2τ2ζ̄ + µη2τ2ν̄2 + κ

(
µη2 +

η

2α

)
+

(
ηµ2

2
+ 2η2τµ3

)[
32τ3η2

∥∥∇LB(θ
t)
∥∥2 + 32τ3ζ̄η2 + 4τ2η2ν̄

]
=

[[
−
(ητ

2
− ηα

2

)
+ 4µη2τ2

]
+

(
ηµ2

2
+ 2η2τµ3

)(
32η2τ3

)]
E
∥∥∇LB(θ

t)
∥∥2

+

(
ηµ2

2
+ 2η2τµ3

)(
32τ3ζ̄η2 + 4τ2η2ν̄

)
+ 4µη2τ2ζ̄ + µη2τ2ν̄ + κ

(
µη2 +

η

2α

)
≤ −ηE

∥∥∇LB(θ
t)
∥∥2 + (ηµ2

2
+ 2η2τµ3

)(
32τ3ζ̄η2 + 4τ2η2ν̄

)
+ 4µη2τ2ζ̄ + µη2τ2ν̄ + κ

(
µη2 +

η

2α

)
≤ −ηE

∥∥∇LB(θ
t)
∥∥2 + κ

(
µη2 +

η

4

)
+ 7ητ ζ̄ + (1 + τ)ην̄ (27)
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where the second inequality holds with α ≥ 2, and η ≤ 1/3µτ .
Times 1/η to the both sides of 27, rearranging and summing it form t = 0 to t = T − 1 and dividing by T , one yields

1

T

T−1∑
t=0

∥∥∇LB(θ
t)
∥∥2 ≤

(
LB(θ

0)− LB(θ
∗)
)

Tη
+ κ (µη + 1) + 7τ ζ̄ + (1 + τ)ν̄.

Assume θ̃ is uniformly sampled from the sequence of outputs {θ0, θ1, . . . , θT } generated by FL with LASA as the F , then
we have

E
∥∥∥∇LB(θ̃)

∥∥∥2 =
1

T

T−1∑
t=0

∥∥∇LB(θ
t)
∥∥2 ,

which concludes the proof.
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