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A. Adjusted Self-Cross Similarity Loss Deriva-
tion

To adjust self-cross similarity loss to consider particles
in unlabeled regions, we recognize that a certain proportion
(π̂) of the unlabeled regions contain particles. Based on
this, we propose an adjustment to the self-cross similarity
loss. Specifically, we modify each unlabeled region’s latent
feature by applying a weighting scheme based on the esti-
mated probability (π̂) that the unlabeled region contains a
particle. This probability also informs the complementary

weight (1 − π̂) for the likelihood that the region does not
contain a particle.

This necessitates an additional layer of analysis. We
now need to consider the self-similarity among these po-
tential positive regions within the unlabeled data, the self-
similarity between these potential positive regions and ex-
emplars, and the cross-similarity between potential positive
regions and the negative regions within the unlabeled data.
This leads to the ensuing derivations of the adjusted self-
similarity and cross-similarity:
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respectively.

Formulas (1) and (2) can be simplified to the following
expression:
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Based on the adjusted self-similarity and cross-similarity,
the adjusted self-cross similarity loss can be derived as fol-
lows:

L̂SCS(Ŝcross, Ŝself ) = max
(
τ, 1 + α · Ŝcross − (1− α) · Ŝself

)
,

(1)

α balances self and cross-similarity contributions, and τ
sets a minimum difference threshold between them, limit-
ing further distinction efforts beyond it.

B. Algorithm of Finding Optimal Threshold
for Similarity Scores

This section presents our algorithm for determining
the optimal threshold for truncating potential particle lists
based on similarity scores.

Following the completion of the sliding process on a mi-
crograph, these similarity scores are ranked. It is crucial to
recognize the variability in the imaging states of different
micrographs, where a single threshold does not work well.
Therefore, we adopt a density-based method to determine
the most suitable cutoff threshold for each micrograph au-
tomatically. This process involves calculating the average
distance of each score to its k nearest neighbors, and find-
ing the score where the rate of change in these average dis-
tances is maximized as the cutoff threshold. The algorithm
is shown below:

Algorithm 1 Optimal Threshold Determination for Similar-
ity Scores

Require: S (sorted list of similarity scores), k (number of
nearest neighbors)

Ensure: Tidx (threshold index), Tval (threshold value)
1: Procedure DETERMINE THRESHOLD(S, k)
2: Initialize ∆S as an array of zeros of length |S|
3: for i = 0 to |S| − 1 do
4: Di ← |S − S[i]|
5: ∆S[i]← mean(top-K(Di, k))
6: end for
7: ∆diff ← diff(∆S)
8: Tidx ← argmax(|∆diff|) + 1
9: Tval ← S[Tidx]

10: return Tidx, Tval

11: End Procedure

C. Details of Datasets
To ensure a fair comparison, the following EMPIAR IDs

should not be used as evaluation sets, as these particles were
used for pre-training by crYOLO, Topaz, or CryoTrans-
former:

EMPIAR IDs: 10004, 10005, 10017, 10023, 10025,
10028, 10033, 10050, 10059, 10075, 10093, 10072, 10077,
10081, 10096, 10097, 10154, 10160, 10181, 10184, 10186,
10215, 10234, 10240, 10289, 10291, 10345, 10532, 11056,
10387, 10406, 10444, 10526, 10590, 10671, 10737, 10760,
10816, 10852, 11051, 11057, 11183.

The evaluation datasets we selected are from the Cry-
oPPP benchmark’s test sets. The selection of test data con-
sidered a range of protein attributes, including type, shape,
size, and overall structural attributes, which is enough to
validate our methods.

The five additional unlabeled micrograph datasets
sourced from the EMPIAR database include TcdA1 [2],
80S ribosome [1], AAA-ATPase [5], truncated PVY coat
[3], and Chicken CALHM1 [4].

D. Details of Baseline Methods
We compare our cryoMAE with three baseline methods

crYOLO1, Topaz 2, and CryoTransformer 3.
As for crYOLO, we use its official pre-trained model,

which is an adjusted version of YOLO called PhosaurusNet.
PhosaurusNet augments the original YOLO architecture by
doubling the size of the feature map after layer 21, and con-
catenating it with the feature map from layer 13. The model
is trained on a diverse and extensive collection of datasets,
which encompass 18 internal datasets not available to the
public, 14 datasets from EMPIAR, 10 simulated datasets, 6

1https://cryolo.readthedocs.io/en/stable/.
2https://cb.csail.mit.edu/cb/topaz/.
3https://github.com/jianlin-cheng/CryoTransformer/.

https://cryolo.readthedocs.io/en/stable/
https://cb.csail.mit.edu/cb/topaz/
https://github.com/jianlin-cheng/CryoTransformer/


datasets contributed by users, and 10 particle-free datasets
that exclusively contain contamination. 14 data sets from
EMPIAR are 10023, 10004, 10017, 10025, 10028, 10050,
10072, 10081, 10154, 10181, 10186, 10160, 10033, and
10097. The simulated datasets are generated based on spe-
cific PDB models, namely: 1sa0, 5lnk, 5xnl, 6b7n, 6bhu,
6dmr, 6ds5, 6gdg, 6h3n, and 6mpu.

As for Topaz, we use its pre-trained resnet16 u64 model
(16 layers, each layer has 64 units). It is trained on a large
corpus of datasets including a wide variety of particles in-
cluding EMPIAR-10025, 10028, 10096, 10215, 10234, and
Toll receptor.

For the CryoTransformer model, we utilized the recom-
mended settings from its official repository. The model
was trained using micrographs of 22 proteins from the Cry-
oPPP dataset, with each EMPIAR ID’s data split into 80%
for training, 10% for validation, and 10% for internal test-
ing. The EMPIAR IDs for these 22 proteins are as follows:
11183, 11057, 11051, 10852, 10816, 10760, 10737, 10671,
10590, 10526, 10444, 10406, 10387, 10291, 10289, 10240,
10184, 10096, 10077, 10075, 10059, and 10005.

E. CryoSPARC 3D Reconstrction Workflow
The detailed 3D reconstruction workflow using

CryoSPARC is shown in Fig. 1. The workflow, from
particle picking to reconstructed structure, encompasses
essential steps: contrast transfer function (CTF) esti-
mation, 2D classification, 2D class selection, ab initio
reconstruction, and homogeneous refinement.

Initially, micrographs are imported into CryoSPARC
from .mrc files, along with particle coordinates from
.star files. CTF estimation is conducted on the mi-
crographs to correct phase contrast from the microscope,
which is essential for achieving high-resolution reconstruc-
tions. Following this, particles are extracted using the pro-
vided coordinates, and undergo 2D classification to segre-
gate them into classes, discarding aberrant particles to en-
hance data quality. 2D class selection further ensures only
high-quality particles are used. Ab initio reconstruction
generates 3D models without prior knowledge, and homo-
geneous refinement polishes the model and ascertains the
reconstruction resolution.

F. More Particle Picking Results
To vividly compare particle picking results, we visualize

some outcomes by crYOLO, Topaz, CryoTransformer, and
cryoMAE (see Fig. 2 and Fig. 3).

Fig. 2 and Fig. 3 reveal that Topaz and CryoTrans-
former tend to identify a larger number of regions than the
groundtruth, resulting in numerous false positives. CrY-
OLO frequently overlooks some particle regions, indicat-
ing a tendency to miss true positives. In contrast, cryoMAE

demonstrates a balanced approach, effectively minimizing
false positives while successfully identifying a greater num-
ber of true positives. Notably, crYOLO exhibits commend-
able performance on EMPIAR-10081, which can be at-
tributed to the inclusion of EMPIAR-10081 particles in its
pre-trained model’s training set. However, its performance
declines on EMPIAR-10345, a dataset not encountered dur-
ing its training. This discrepancy raises concerns regarding
crYOLO’s ability to generalize to unseen particles, under-
lining a significant challenge in achieving robust general-
ization across diverse datasets.

G. Performance of Fine-tuned CrYOLO and
Topaz

Before cryoMAE is employed for particle picking on mi-
crographs of a specific particle type, the model is fine-tuned
using 15 particles of that type. To investigate the impact
of fine-tuning on a limited number of examples on SOTA
methods (crYOLO and Topaz), we conducted additional ex-
periments. Unlike cryoMAE, which fine-tunes directly on
particle exemplars, crYOLO and Topaz are designed to fine-
tune on entire micrographs. Therefore, to evaluate these
models under similar conditions, we fine-tuned crYOLO
and Topaz on a micrograph containing the 15 particles used
to fine-tune cryoMAE. The fine-tuning was performed fol-
lowing the official guidelines provided by the Topaz GitHub
repository and the crYOLO website, using the suggested de-
fault parameters. It is important to note that this comparison
is not entirely fair, as a single micrograph typically contains
significantly more than 15 particles.

The results are shown in Tab. 3. As illustrated in the ta-
ble, despite crYOLO and Topaz being exposed to more par-
ticle examples during fine-tuning compared to cryoMAE,
their performance still lags behind that of cryoMAE. No-
tably, crYOLO’s performance slightly declines after fine-
tuning, whereas Topaz shows some improvement. This can
be explained by the different approaches these models take
toward the particle picking task. CrYOLO treats particle
picking as an object detection task, which is inherently more
complex due to the nature of the task and the sophisticated
YOLO model it employs. In this setup, each micrograph is
considered a single item in the dataset, making the model
prone to overfitting when fine-tuned on one micrograp, thus
likely accounting for its reduced performance after fine-
tuning.

In contrast, Topaz, like our method, approaches the task
as subregion classification. This approach is simpler, the
model is less complex, and each particle within a micro-
graph is treated as a separate item, effectively expanding the
dataset and enhancing robustness against overfitting. How-
ever, compared to our method, Topaz relies solely on class
labels as the supervisory signal, which is relatively weak
and does not incorporate contrastive learning. This limita-



tion can hinder the model’s ability to learn robust and rep-
resentative features. Our method addresses it by leveraging
masking, self-supervised learning, and contrastive learning,
which together facilitate the learning of more representative
features, as discussed in the main paper.

H. Sensitivity Analysis on Weight Factor for
Loss

Our weight factor for loss was determined through grid
search and empirical validation. Results are shown in
Tab. 1.

(α, τ, β) Average of

Prec. Rec. F1 sco. Ab-ini. res.

(0.5, 0.01, 3) 0.536 0.662 0.584 11.32
(0.7, 0.02, 5) 0.540 0.667 0.591 10.13
(0.9, 0.03, 7) 0.500 0.624 0.561 11.85

Table 1. Average performance on test sets with different loss
weight factors. Unit for Ab-initio reconstruction resolution is Å.

I. Evaluate Model Performance with Different
Numbers of Exemplars with Ab initio Re-
construction Resolution

Ab initio reconstruction resolution evaluates the diversity
of orientations of picked particles. In our experiments, only
the number of exemplars significantly impacts orientation
diversity. We include ab initio reconstruction resolution as
a metric for this experiment in Tab. 2 below.4 Ab-initio re-
construction is quite cumbersome; for other experiments,
the chosen metrics are sufficient.

EMPIAR ID 1 5 15 25

10081 16.51 12.68 11.32 11.34
10093 17.13 10.75 9.02 9.01
10345 19.40 11.81 10.27 10.53
10532 16.32 11.01 9.92 10.06

Average 17.34 11.56 10.13 10.24

Table 2. (Continuation of Table 6 in the Main Paper) Ab-initio
reconstruction resolution (Å) with various exemplar numbers.

J. The Selection of π̂
The symbol π̂ denotes a prior estimate of the proportion

of particle regions within randomly selected regions. This
can be estimated by the formula π̂ ≈ k×p

t , where k is the
number of pixels around a particle region’s center that can

4The micrographs for EMPIAR-11056 were not available in the .mrc
format, precluding us from performing a 3D reconstruction for this parti-
cle.

be accepted as the particle’s central pixel, p is the estimated
number of particles in a micrograph, and t is the total region
number in a micrograph.

We calculated this ratio for micrographs of multiple par-
ticles (excluding particles in our test set) and concluded
that 0.018 is a generally acceptable value. However, this
value may be tailored for improved outcomes with specific
datasets if preliminary insights are available. In this context,
we proceed under the assumption that our knowledge of our
test set is limited to a few labeled examplars. Consequently,
we have opted to maintain the value at 0.018.

K. Overview of EMPIAR
EMPIAR is the sole source of publicly available raw

cryo-EM data. CryoPPP is more like a collection of many
protein datasets from EMPIAR than a single dataset. Even
though there might be different datasets other than Cry-
oPPP, these data all originate from the same EMPIAR
source, with variations only in preprocessing and annota-
tion methods.

L. Code Availability
Our code is available at: https://github.com/

xulabs/aitom.
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Table 3. Performance comparison of fine-tuned crYOLO (indicated by *), fine-tuned Topaz (indicated by *), non-fine-tuned crYOLO
(without *), non-fine-tuned Topaz (without *), and our proposed cryoMAE.

EMPIAR ID Precision Recall F1 score Resolution (Å)

crYOLO* Topaz* crYOLO Topaz Ours crYOLO* Topaz* crYOLO Topaz Ours crYOLO* Topaz* crYOLO Topaz Ours crYOLO* Topaz* crYOLO Topaz Ours

10081 0.702 0.418 0.705 0.412 0.645 0.853 0.863 0.867 0.855 0.939 0.770 0.563 0.777 0.556 0.765 12.39 12.41 12.25 12.72 11.32
10093 0.379 0.341 0.380 0.328 0.383 0.357 0.267 0.355 0.209 0.497 0.368 0.299 0.367 0.255 0.433 11.66 11.59 11.64 11.62 9.02
10345 0.443 0.216 0.441 0.195 0.473 0.554 0.738 0.561 0.732 0.733 0.492 0.334 0.494 0.308 0.575 11.82 10.35 11.63 10.39 10.27
10532 0.487 0.410 0.501 0.387 0.503 0.227 0.373 0.231 0.311 0.497 0.310 0.391 0.316 0.345 0.500 12.90 10.59 12.86 10.85 9.92
11056 0.678 0.471 0.690 0.453 0.694 0.452 0.611 0.465 0.578 0.671 0.542 0.532 0.556 0.507 0.682 - - - - -

Average 0.538 0.371 0.543 0.355 0.540 0.489 0.570 0.496 0.537 0.667 0.496 0.424 0.502 0.394 0.591 12.19 11.24 12.10 11.40 10.13

* The micrographs for EMPIAR-11056 were not available in the .mrc format, precluding us from performing a 3D reconstruction for this particle.

Figure 1. CryoSPARC 3D reconstrction workflow.



Figure 2. Particle picking results on EMPIAR-10081 by crYOLO, Topaz, CryoTransformer, and cryoMAE.



Figure 3. Particle picking results on EMPIAR-10345 by crYOLO, Topaz, CryoTransformer, and cryoMAE.
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