
A. Human Performance
In computer vision and machine learning, human per-

formance is typically seen as the benchmark for AI mod-
els. However, in the case of image attribution, the sce-
nario reverses—AI significantly outperforms humans. This
is highlighted by an experiment conducted by one of our co-
authors, who has extensive experience with AI-generated
images. Tasked with attributing 650 images to their correct
source generators, the co-author achieved only a 37.23%
accuracy rate. This figure, while better than the 7.69% ran-
dom chance level, is markedly inferior to the accuracy of
our top AI classifier that has 90%+ accuracy. This outcome
underlines the exceptional challenge of image attribution,
where even well-informed individuals struggle. It shows
the necessity of AI in assisting humans with tasks that are
beyond their natural proficiency, emphasizing AI’s potential
to enhance human performance in specialized domains.

From the perspective of the human evaluator, differenti-
ating between certain AI image generators and others can
be nuanced yet discernible. The Latent Consistency Mod-
els (LCM) [46], at 2 and 4 steps, are notable for their oc-
casional oversmooth artifacts, a result of undersampling,
making them easier to identify compared to other models.
DALL-E 3 [5] is distinguished by its tendency to produce
surreal, cartoonish images, though these often exhibit repet-
itive patterns. DALL-E 2 [60], on the other hand, is char-
acterized by a unique ‘sharp’ visual artifact, likely a conse-
quence of its pixel diffusion process in the decoder, setting
it apart from other models. Midjourney versions 5.2 and
6 [53] typically deliver the highest quality images, some-
times with a distinctive cinematic style.

Real images, however, are more straightforward to iden-
tify. One can often look at the detailed object regions—like
hands and text—where AI-generated images tend to falter.
The naturalistic photo style of real images also serves as a
key differentiation factor from AI-generated content. Other
generators, such as SD 1.5 [64], SD 2.0 [64], SDXL [58],
SDXL Turbo [66], Kandinsky 2.1 [61], and Stable Cas-
cade [56], present a greater challenge for human evaluators
to distinguish due to the subtlety of their differences.

B. Data and Implementation Details
GPT-4 Generated Prompts. Building upon Section 3

of our main paper, this section describes the methodology
behind generating creative and surreal prompts using GPT-
4 [1]. As illustrated in Fig. 11 in the supplemental, our
process begins with the formulation of system-level instruc-
tions directing GPT-4 to act as an assistant for writing text
prompts. We then supply a specific context and a collection
of several hundred exemplary prompts. This setup enables
GPT-4 to synthesize and generate new, innovative prompts
based on the provided examples and context.

Image Generation. We employed 12 T2I diffusion

models to generate RGB images without watermarks, and
the generated image sizes are as follows:

· 512 × 512: Kandinsky 2.1, SD 1.1, SD 1.2, SD 1.3,
SD 1.4, SD 1.5, SD 2.0, SDXL Turbo

· 1024 × 1024: DALL-E 2, DALL-E 3, LCM (2 steps),
LCM (4 steps), Midjourney 5.2, Midjourney 6, SDXL,
Stable Cascade

We also use 5000 real images from the MS-COCO [41]
2017 validation set.

More Visualizations of Hyperparameter Variations.
As an extension of Fig. 2 in the main paper, we show more
image generations with hyperparameter variations in Fig.
12 in the supplemental.

Training Data. For Sections 4.1 and 5 in the main pa-
per, we view image attribution as a 13-way classification
task with 12 text-to-image diffusion models and 1 set of
real images. An exception is the cross-domain generaliza-
tion study, where we exclude real images as a 13th class
because there are no real images for the GPT-4 generated
prompts. It’s important to note that we use 3200 training,
450 validation, and 450 testing images per class.

For Section 4.2, we analyze four hyperparameters: Sta-
ble Diffusion checkpoint, scheduler type, number of sam-
pling steps, and initialization seed. When training classi-
fiers for SD checkpoints, schedulers, and sampling steps,
we use 20000 training, 2500 validation, and 2500 testing
images per class. For seeds, we use 3200 training, 450 val-
idation, and 450 testing images per class.

For Section 4.3, we run inference using the Efficient-
Former [40] trained with text prompts from Sec. 4.1. For
SDXL Inpainting [58] and Photoshop Generative Fill [57],
we use 450 images from each of the 13 classes. For Mag-
nific AI [47], we use 10 images from each of DALL-E 3,
Midjourney 6, and SDXL Turbo.

Data Augmentation. During training, we first resize
each image to have a shorter edge of size 224 using bicubic
interpolation, then center crop the image to size 224× 224,
and finally randomly flip the image horizontally with proba-
bility 0.5. During validation and testing, we only resize and
center crop the images.

Image Attributors. We selected three network architec-
tures for the image attribution task, and we use the code im-
plementation from MMPretrain [13]. Our primary architec-
ture is EfficientFormer-L3 [40] trained from scratch because
it is a lightweight transformer. Moreover, we employ a pre-
trained, frozen transformer backbone attached to a linear
probe (LP) or multilayer perceptron (MLP). The backbone
is either CLIP ViT-B/16 [59] or DINOv2 ViT-L/14 [55], and
the MLP consists of three linear layers with sigmoid activa-
tion and hidden dimension 256. For the linear probe and
MLP classifier heads, there are 768 channels in the input



User: I am trying to generate 
thousands of novel prompts for 
AI to generate images using 
tools, such as Midjourney, 
Stable Diffusion, and DALL-E. 
You can use your prior knowledge 
abour popular prompts, and I am 
also providing you a few hundred 
examplar prompts in below:

Cat looking at it and ‘on top of 
the world, cyberpunk poster, in 
the style of Erik Jones, social 
media portraiture, sparth, 
vibrant color fields, graffiti 
and street art, highly detailed 
figures, hyper-detailed
……

Could you learn from these 
prompts and generate 30 more 
prompts that are sufficiently 
diverse and novel covering 
various content and styles. 

GPT 4

System: You are an AI 
assistant to help generate
image text prompts.

Response:
A surreal depiction of a city skyline turning into a wave, in the style of 
Salvador Dali
A cybernetic eagle soaring over a futuristic cityscape, rendered in the style of 
Moebius
An old oak tree sheltering a boy, a dog and a horse, reflecting Johanna Basford's 
style
A steampunk table setting, complete with cogs and gears, in a dingy Victorian 
room, Max Ernst style
The Milky Way stretched across a desert landscape, in vivid neon colors, 
reflecting the style of Brandon Woelfel
An armored dinosaur in a dramatic rainforest battle, inspired by classic paleoart
An underwater castle made of coral, filled with merfolk, in the style of Ohnaka 
Akane
A miniaturized New York City, with tiny taxis and pedestrians, mimicking Tatsuya 
Tanaka's miniature calendar
A fiery phoenix rising from a cityscape, reflecting the style of Simon Stålenhag’s 
retro futuristic scenes
A regal king standing heroically on a dragon's head, detailed in the style of 
Yoshitaka Amano
A romantic scene of two people kissing under cherry blossom trees, digital oil 
painting style of Leonid Afremov
A dark space station inhabited with multi-species aliens living harmoniously, 
vibrant color tones and intricate details, H.R Giger’s surrealism style
A demon and an angel playing chess on the edge of a cliff during a storm, in the 
style of Francisco Goya
An 8k ultra-detailed mural of graffiti covering an entire city block, reflecting 
the style of Banksy
A hyper-detailed print of a wise owl reading a spellbook, in the style of Brian 
Froud’s fantasies
……

Figure 11. An illustration of how we use the GPT-4 API to massively generate thousands of creative and surreal prompts.
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Figure 12. More examples showcasing the diversity in generated images influenced by varying hyperparameters: different model check-
points within the same architecture, diverse scheduling algorithms, varied initialization seeds, and a range of inference steps.

feature map for CLIP+LP and CLIP+MLP, and 1024 chan-
nels for DINOv2+LP and DINOv2+MLP.

To train image attributors with text prompts, we compute
text embeddings using a pretrained CLIP [59] text encoder.

Then, we concatenate image embeddings from the back-
bone with text embeddings as input to the classifier head.

For all image attributors, we set a batch size of 128 and
train for 2000 epochs. We use the checkpoint with the best



validation accuracy. Additionally, we utilize the AdamW
optimizer [45] with learning rate 0.0002 and weight decay
0.05. The learning rate scheduler has a linear warm-up pe-
riod of 20 epochs, followed by a cosine annealing schedule
with a minimum learning rate of 0.00001.

Perspective Fields. We use the code implementation
from [35]. Each input to the attributor trained on Perspec-
tive Fields has a size of 640× 640× 3. The first 640× 640
channel contains latitude values, and the next two 640×640
channels contain gravity values. We adapt the code from
[35] to visualize the Perspective Field on a black image in
Fig. 7 of the main paper.

How Gram Matrix Relates to Image Style. Gatys et
al. [24] characterize the texture of an image by computing
correlations between feature channels in each layer of a con-
volutional neural network. These correlations are given by
the Gram matrix, which is the inner product of vectorized
feature maps. Extending their method to image style, Gatys
et al. [25] incorporate feature correlations, i.e. Gram matri-
ces, from multiple layers of the network to obtain a multi-
scale representation of the image that extracts texture de-
tails without the global arrangement. Intuitively, employing
different layers of the network leads to style representations
at varying scales because features capture more complex in-
formation in later network layers. Thus, we aggregate Gram
matrices from three layers of a pretrained VGG network to
train our image attributor on image style representations.

Adapting to New Text-to-Image Diffusion Models.
Our work provides a seamless integration pathway for new
generative models. For instance, to incorporate a new gen-
erator such as SD 2.0, one would simply generate approx-
imately 5,000 images, add them to the existing training
dataset, and retrain the models. This process typically re-
quires around three days using a single RTX 4090 GPU.
We intend to continually update our image attributor to
include popular new open-source generators. Moreover,
should there be a model not yet incorporated, anyone could
replicate this integration process independently, as we plan
to release all related code and datasets to the community.

C. Additional Experiments
C.1. Color Analysis

In addition to studying image style and image composi-
tion pattern, we examine whether different generators pro-
duce images with distinct color schemes. We use 100 im-
ages generated from a set of fixed prompts for our analysis.
In Fig. 13, we visualize the density distribution of pixel val-
ues in each RGB color channel. We discover that Kandin-
sky 2.1 [61], Midjourney 5.2 [53], and Stable Cascade [56]
often generate images with a wider range of pixel intensity
values. In Fig. 14, we observe that these three generators
often create images with glow and shadow effects, which
can lead to higher and lower intensities.

C.2. Comparison of Frozen vs. Fine-tuned CLIP/
DINOv2 Backbone

In Section 4.1 of the main paper, we evaluated the accu-
racy of a frozen CLIP [59] backbone connected with a linear
probe and MLP, and a frozen DINOv2 [55] backbone with
a similar configuration. In this section, we compare using a
frozen and fine-tuned backbone for the CLIP and DINOv2
linear probes. Table 5 indicates that a CLIP backbone pro-
vides marginally better performance than a DINOv2 back-
bone when the backbone is frozen. However, the reverse
holds true when the backbone is fine-tuned.

C.3. Image Resolutions

The default EfficientFormer [40] takes inputs of size
224×224. We examine the performance of using five addi-
tional image resolutions between 128×128 and 1024×1024
for image attribution. As illustrated on the left side of Fig.
15, accuracy tends to increase as image resolution increases.

C.4. Cropped Image Patches
Our previous experiments use most, if not all, image pix-

els for the image attribution task. We also explore the op-
posite: how few pixels are necessary to achieve good per-
formance? Inspired by [11, 87], we crop a single patch of
each image and then train EfficientFormer [40] on these
patches instead of the full-sized images. Specifically, we
first resize each original image to have a shorter edge of
size 512, then center crop the image to create a patch of
size k×k, and finally resize the patch to 224×224. We uti-
lized k = [2, 4, 8, 16, 32, 64, 128, 256] and resized images
using bicubic interpolation. On the right side of Fig. 15, we
see that accuracy increases with image patch size. Remark-
ably, even training an image attributor on 2× 2 patches can
lead to 22.29% accuracy, which is well above the random
chance accuracy of 7.69%.

C.5. Potential Application of Model Stealing
It’s important to note that our research might facilitate

‘model stealing,’ or the reverse engineering of a model’s
architecture. As an initial experiment, we projected 20 im-
ages generated from each of the four most recent non-open-
source models—‘Adobe Firefly Image 3’ [2], ‘SD 3’ [73],
‘SD 3 Turbo’ [73], and ‘Meta AI Imagine’ [52]—into the
t-SNE feature embedding space of our pretrained image
attributor. As illustrated in Fig. 16, we observe that im-
ages from ‘Adobe Firefly Image 3’ appear similar to those
from ‘Midjourney 5.2’ and real images. Meanwhile, ‘SD
3’ and ‘SD 3 Turbo’ are closer to ‘Stable Cascade’ and
‘Midjourney 6’, and ‘Meta AI Imagine’ largely overlaps
with ‘DALL-E 3’. This comparative analysis could lay
the groundwork for inferring the architectures of non-open-
source models based on those already known.



Prompt: “a couple, a daughter and a corgi walking”

Prompt: “a girl dancing”

Prompt: “a person ride a bike”

Prompt: “two cars, a truck, and an airplane in the cityscape”

Figure 13. Density distribution of pixel values in RGB color channels after averaging 100 images for each prompt and generator. Kandinsky
2.1 [61], Midjourney 5.2 [53], and Stable Cascade [56] tend to create images covering a wider range of pixel intensities.

D. Elaboration on Results in the Main Paper
In this section, we expand upon the results from the ex-

periments performed in the main paper. Figure 17 and Table
6 showcase the confusion matrices and evaluation metrics
for the image attributors in Sec. 4.1. Furthermore, Figure 18
and Table 7 present the confusion matrices and evaluation
metrics for the cross-domain generalization study in Sec.
4.1. Additionally, Figure 19 illustrates the confusion matri-

ces for post-editing enhancements in Sec. 4.3. Lastly, Fig-
ure 20 visualizes the averaged segmentation masks across
generators for two additional prompts, which is an exten-
sion of our image composition analysis in Sec. 5.

Takeaways from high-frequency perturbations. Prior
works have predominantly claimed that classifiers in tasks
like ‘real vs. fake’ and image attribution primarily learn
from discriminative information in the high-frequency do-
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Figure 14. Visualization of 100 images averaged together for each prompt and generator. Consistent with our observations in Fig. 13, we
see that Kandinsky 2.1 [61], Midjourney 5.2 [53], and Stable Cascade [56] often produce images with glow and shadow effects.

CLIP + LP DINOv2 + LP

Backbone Frozen Fine-tuned Frozen Fine-tuned

Accuracy 70.15% 95.31% 67.68% 96.67%
Precision 69.95% 95.51% 67.36% 96.71%
Recall 70.15% 95.32% 67.68% 96.67%
F1 70.00% 95.34% 67.45% 96.67%

Table 5. Quantitative comparison of using a frozen or fine-tuned backbone to train CLIP [59] and DINOv2 [55] linear probes. CLIP
achieves higher accuracy than DINOv2 when the backbone is frozen, but the opposite is true when the backbone is fine-tuned.

Figure 15. Left: Accuracy of our EfficientFormer [40] image attributor across six image resolutions on the 13-way classification task. In
general, accuracy increases as image resolution increases. Right: Accuracy of EfficientFormer across eight image patch sizes. Interestingly,
using 2 × 2 image patches can achieve 22.29% accuracy, whereas the probability of randomly guessing the correct generator is 1

13
,

corresponding to 7.69%.

main. While we concur that high-frequency details can be
crucial for discrimination, our work has demonstrated that

even when these details are altered, the classifier can still
identify highly discriminative features and attain decent ac-



New Generators

Figure 16. The t-SNE visualization of 4 unseen new generators in
the feature space of our pretrained image attributor.

curacy. Our finding does not contradict earlier claims, but
rather suggests a shift in perspective, showing that reliance
only on high-frequency details may not be necessary.

E. Grad-CAM Visualizations
Figure 21 showcases the Grad-CAM [26, 68] heatmaps

for image attributors trained on various image types, includ-
ing the original RGB images, images after high-frequency
perturbations, and mid-level representations. We observe
that the image attributors trained on RGB images and im-
ages after high-frequency perturbations tend to pay atten-
tion to smooth image regions, such as the sky or ground.
Nonetheless, even though the attributors focus on varied im-
age regions, it remains difficult to explain how they make
their decisions for each image.

F. Broader Impacts
We acknowledge that text-to-image diffusion models

pretrained on large-scale, uncurated web data may produce
biases and errors. Additionally, we use text prompts that are
based on captions of MS-COCO [42] images and GPT-4 [1]
outputs, which may generate images of people.



E.F. (scratch) CLIP+LP CLIP+MLP DINOv2+LP DINOv2+MLP

Accuracy 90.03/90.96 70.15/71.44 73.09/74.19 67.68/69.44 71.33/73.08
Precision 90.07/90.98 69.95/71.30 73.13/74.12 67.36/69.09 71.20/72.91
Recall 90.03/90.96 70.15/71.44 73.09/74.19 67.68/69.44 71.33/73.08
F1 90.04/90.96 70.00/71.25 73.07/74.12 67.45/69.17 71.23/72.93

Table 6. Additional quantitative evaluation of image attributors for 13-way classification, consisting of 12 generators and a set of real
images. The values (percentages) represent training each attributor Without / With text prompts.

Train on MS-COCO Train on GPT-4 Train on Both

Accuracy 89.04/69.24 71.07/79.35 85.78/81.06
Precision 89.07/70.38 71.81/79.29 85.88/80.87
Recall 89.04/69.24 71.07/79.35 85.78/81.06
F1 88.99/68.44 71.06/79.21 85.78/80.86

Table 7. Cross-domain generalization in image attributors. The amount of training and testing data was kept consistent across trials, and an
equal number of images was sourced from MS-COCO and GPT-4 prompts for the ‘Train on Both’ trial. The values (percentages) represent
testing on images from MS-COCO / GPT-4 prompts.



Figure 17. Confusion matrices for image attributors in Sec. 4.1. The backbone for the CLIP and DINOv2 models is frozen.



Figure 18. Confusion matrices for cross-domain generalization in Sec. 4.1.



Figure 19. Confusion matrices for evaluating on post-edited images in Sec. 4.3.
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Figure 20. Additional image composition analyses across generators. We show the averaged segmentation masks for each semantic class
indicated on the left side. We also list the top three inserted classes and the number of images (out of 100) with these classes.

Figure 21. Grad-CAM [26, 68] visualizations for image attributors trained on each image type, where each column represents a distinct
attributor. The first and third rows illustrate the Grad-CAM heatmaps overlaid on the input images. The second and fourth rows show the
input images without Grad-CAM. The first example on the top is based on a real image from MS-COCO [41], while the second example
on the bottom is based on a fake image generated by SDXL Turbo [66]. We notice that the attributors trained on RGB images and images
after high-frequency perturbations often focus on relatively smooth image regions, such as the sky or ground.


