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1. Computation Efficiency
In this section, we discuss the computational complexity

of existing methods and our proposed approach for visual

anagram generation.

Experimental Setup. We conduct the experiments on

a server equipped with two AMD EPYC 7742 CPUs and

1TB RAM, running CUDA 12 and PyTorch 2.1.1, and each

method only uses a single NVIDIA RTX 3090 GPU at a

time. For Burgert et al. [1] and Tancik [5], number of it-

erations and number of inference steps per image are set to

10,000 and 500, respectively, which are the default values

in their open-source code. For Geng et al. [2] and our pro-

posed method, the number of inference steps is fixed at 30.

These settings are consistent with the main text. Note that

fine-tuning backbone diffusion models is not required for

all methods, and we report the average computation time

per image for each method in Tab. 1. The reported time

exclude model and data loading time, and all methods are

evaluated using the 2-view CIFAR10 dataset as in the main

text.

Results. As shown in Tab. 1, among all tested methods,

Burgert et al. [1] has the longest computation timedue to its

use of Score Distillation Loss (SDL) [3], which involves a

large number of iterative optimization steps. The other three

methods run significantly faster, as they operate within the

typical time frame of diffusion model inference. Our pro-

posed method is slightly slower than our baseline method

[2], as it incorporates additional modules to enhance visual

anagram quality. Tancik [5] takes slightly more time than

our method, primarily because it employs a latent diffusion

model [4] where the latent code is not rotation-invariant,

and therefore requires more inference steps to generate the

final image.

2. Additional Qualitative Results
We provide additional qualitative results to compare our

method with existing methods [1, 2, 5] in Fig. 1, including

samples generated on prompts from the 2-view CIFAR10

Method Computation Time (sec/img)

Tancik [5] 27.1

Burgert et al. [1] 3016.0

Visual Anagrams [2] 13.4

Ours 20.2

Table 1. Computation Complexity. We report the average com-

putation time per image for each method.

and 3-view CIFAR10 datasets mentioned in the main text,

together with some free-form examples.
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Figure 1. Qualitative Results. We provide additional qualitative results to compare our method with existing methods. Tancik [5] uses a

latent diffusion model [4] but struggles with transformation inconsistencies in the latent code, as discussed in [2]. Burgert et al. [1] employs

Score Distillation Loss (SDL) [3] which requires expensive iterative optimization and results in reduced image quality. Geng et al. [2] also

encounters issues with concept segregation and concept domination. For Burgert et al. [1], we only present results for 2-view flippy visual

anagram generation, as their released code does not support other configurations.


