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A. More details of attack settings

We add a “plus” trigger to benign samples to generate
the poisoned data samples. For DBA attack [6], we decom-
pose the “plus” trigger into four local patterns, and each
malicious client only uses one of these local patterns. For
Scaling attack [1], we use a scale factor of 2.0 to scale up
all malicious model updates. For PGD attack [5], malicious
local models are projected onto a sphere with a radius equal
to the L2-norm of the global model in the current round
for CIFAR-100, while for CIFAR-100 we make the radius
of the sphere 10 times smaller than the norm. For Neu-
rotoxin [7], malicious model updates are projected to the
dimensions that have Bottom-75% importance in the aggre-
gated model update from the previous round. For Lie at-
tack [2], we set the maximal value z = 1.5.

B. More details of defense model

In our setting, the server does not have access to the
clients’ local datasets but is familiar with the training ob-
jective, allowing the server to collect a proxy dataset inde-
pendently which is correlated to the local data distribution.
Additionally, the server lacks specific information about the
backdoor attacks, such as the type of trigger used. We fur-
ther assume that the server has no prior knowledge of the
number of malicious clients. To defend against backdoor
attacks, the server will apply an AGR to handle local model
updates received from clients and generate an aggregated
model update at each training round.

C. More details of training settings

We use stochastic gradient descent (SGD) as the local
solver, with the learning rates set as 0.1 with the decay ratio
0.99 and the number of local training epochs set as 2. Note
that in our setting, malicious clients share the same settings
as benign ones. The number of training rounds is set to T =
100 for CIFAR-10 [3] and T = 150 for CIFAR-100 [3].

Table 1. The MA, BA, and RA comparison across different proxy
dataset sizes.

Distribution Metric
Proxy dataset size |Dp|

500 250 200 125 100 50

IID
MA↑ 90.86 90.83 90.68 91.28 91.03 90.87
BA↓ 0.87 0.50 0.58 0.84 0.72 1.19
RA↑ 88.91 88.74 88.67 88.36 88.68 88.14

Non-IID
MA↑ 88.44 88.05 88.41 86.46 87.73 88.35
BA↓ 0.77 1.83 1.72 6.78 60.37 99.99
RA↑ 85.21 84.02 84.21 77.60 35.58 0.01

D. Experiments on various proxy data sizes

We further examine how the size of the proxy dataset af-
fects MASA’s performance. Specifically, we vary the num-
ber of images in the proxy dataset from the default 500 (1%
of the training dataset) down to an extreme of 50 images.
The MA, BA, and RA on both IID and non-IID CIFAR-
10 datasets are presented in Table 1. For the IID case,
MASA’s performance remains relatively stable regardless
of the proxy dataset size. Even when the proxy dataset
is reduced to 50 images, MASA experiences only a slight
drop in BA and RA. However, in non-IID scenarios, MASA
shows greater sensitivity to proxy dataset size. MASA re-
mains robust until the dataset size drops to 125 images, after
which its ability to defend against backdoor attacks weak-
ens significantly. Based on these results, MASA should be
implemented with a reasonably sized proxy dataset in prac-
tice. Our experiments show that using a proxy dataset with
a size of just 1% of the training dataset is sufficient, which
not only reduces the time and effort required for data col-
lection but also minimizes storage needs and computational
overhead. This makes MASA more practical and scalable
in real-world applications where resources are limited.

E. Experiments on generated proxy datasets

In our default setting, we sample 1% of training data to
construct the proxy dataset. Here, we assess MASA’s per-
formance with a proxy dataset generated by cutting-edge
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Table 2. Performance of MASA∗ and MASA on IID and non-IID
CIFAR-10 datasets.

Distribution Method
Badnet Scaling

MA↑ BA↓ RA↑ MA↑ BA↓ RA↑

IID
MASA∗ 90.88 0.71 88.96 90.88 0.71 88.96
MASA 90.86 0.87 88.91 90.86 0.87 88.91

Non-IID
MASA∗ 88.52 1.47 84.31 88.48 0.80 85.57
MASA 88.44 0.77 85.21 88.60 0.96 85.34

pre-trained generative models. Specifically, we utilize the
checkpoint from the SOTA StyleGAN-XL [4]1 to generate
50 images per class of CIFAR-10 dataset, forming the proxy
dataset. We refer to MASA using this generated dataset as
MASA∗. The MA, BA, and RA under both Badnet and
Scaling attacks on IID and non-IID CIFAR-10 datasets are
summarized in Table 2. Overall, MASA∗ demonstrates per-
formance consistent with MASA across both IID and non-
IID scenarios. These results suggest that MASA remains
effective when applied to a generated proxy dataset, sig-
nificantly improving its practical utility in situations where
collecting a proxy dataset is challenging or infeasible.

F. Discussion and future works
In this section, we discuss the primary limitation of

MASA: the individual unlearning performed on the server
adds an extra computational load. This limitation can im-
pact MASA’s effectiveness, especially in larger-scale FL de-
ployments. One potential solution to mitigate this limitation
is to utilize a more powerful server capable of parallel un-
learning. This approach would reduce the computational
cost of individual unlearning by a factor of 1/n compared
to the current MASA implementation.

Another limitation of MASA is its reliance on a clean
proxy dataset that overlaps with the main task data, which
may conflict with the privacy-preserving goals of FL in sen-
sitive scenarios. To address this, one possible solution is to
shift the unlearning process to local execution on clients.
This approach would require protection to ensure that mali-
cious clients follow the unlearning protocol. Alternatively, a
verification mechanism could be introduced to detect if the
models returned by clients genuinely reflect the unlearning
process, thereby maintaining robustness against malicious
behavior.
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