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1. Prompting Multimodal Large Language
Models for Visual Attributes

Recently, Multimodal Large Language Models (MLLM)
have demonstrated powerful capabilities in image descrip-
tion. Given an image with a prompt, we can easily obtain
attributes that describe the image. Lately, some work uti-
lizes Large Language Model (LLM) to obtain attributes [9].
However, compared to using LLM, MLLMs utilize the in-
formation from the image modality to obtain more visual
information, thus addressing the ambiguity issues. For ex-
ample, the term ’mouse’ can refer to an electronic device
or an animal, and prompting it to LLM may not yield the
desired results.

Formally, for any label c and its corresponding image
x, we obtain a list of J attributes attrc = M(classc, x)
using the MLLM, where M represents the MLLM. It is
worth noting that the prompts provided to the MLLM are
predefined; for example, ”Describe the visual features for
classc in the photo, list 6 pieces.” We generate 100 attribute
descriptors attr for each category and transform these de-
scriptors into binary attribute labels using clustering. For
the j-th attribute descriptor of classc, we use the text en-
coder UltraFastBERT [2] to convert attrjc , where j ranges
from 1 to J , into word embeddings vjc . Subsequently, we
use K-means to cluster these embeddings and assign labels.
The i-th clustering center represents the i-th attribute. If the
j-th attribute descriptor attrjc of category c is assigned to
category i, then the i-th attribute of category c receives a
value of 1. Assuming there are K clustering centers, we
finally obtain K-dimensional binary attributes for C cate-
gories. The resulting binary attribute vectors for each cat-
egory, denoted as Ay where y ranges from 1 to C, can be
referred to as attribute prototypes.

The density of attribute clusters reflects the quality of
the corresponding attributes. A higher density of attribute
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Figure 1. Good attribute clustering cluster: High attribute density,
consistent and similar attributes representing the same concepts.
Bad attribute clustering cluster: Low attribute density, confused
meanings among attributes, unable to express the same concepts.

clusters corresponds to a more explicit representation of
the attribute semantics, while a lower density indicates a
more ambiguous representation of semantics, as shown in
Fig.1. Therefore, we clean the individual attribute clusters
and filter out the sparsely clustered attribute clusters, which
not only improves the accuracy of the model but also re-
duces the training burden. We use the Within-cluster Sum
of Squares (WCSS) to represent the density of each attribute
cluster:

WCSS =
1

N

N∑
n=1

|xn − ci|2 (1)

where ci represents the center of the i-th attribute cluster,
and xn represents the embedding of the n-th attribute de-
scriptor within the cluster. A lower WCSS value indicates
better better attrubute cluster.

We utilize four different MLLM templates, each gener-
ating several attributes. First, we provide an example ques-
tion to the MLLM model, followed by a second query. For
MLLM, we use the Qwen-VL-chat model [1]. During the
generation process, we use 4 NVIDIA RTX 4090 (24 GB)
GPU. Here are the templates we employ:
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Figure 2. Word cloud visualization of attribute clusters corresponding to each binary attribute. The left side of dashed line represents ’good
attributes’ with small average intra-cluster distances, while the right side represents ’bad attributes’ that have been filtered out due to large
average intra-cluster distances.

Q: Describe the visual features for the {classname} in
the photo, list 6 pieces.

Q: Describe what the {classname} looks like in the
photo, list 6 pieces.

Q: Visually describe the {classname} in the photo, list 6
pieces.

Q: Describe the visual attributes for the {classname} in
the photo, list 6 pieces.

Next, we apply the method mentioned above to cluster
the attributes in the attribute pool and convert them into bi-
nary attributes. We set the number of clusters to be K = 2*C,
where C is the total number of classes, resulting in binary
attributes of length 2*C. In the sampling mechanism, we set
a filter for the top 20% of maximum WCSS attributes, and
further filter out the attributes that have a shared attribute
count in the top 10% and bottom 10%.

Here, we present several examples of attributes gener-
ated by MLLM. Taking the example of the Black-footed Al-
batross from the CUB dataset, here is a partial display of the
generated attributes: ”has a long, narrow wingspan”, ”has a
gray body”, ”has a white face”, ”has a gray beak”, ”has a
gray tail”, ”Wet and hairless nose with curved nostrils”. We
also visualize the attributes corresponding to each attribute
cluster after clustering. Each attribute cluster corresponds
to a binary attribute, and we use word clouds to visualize all
descriptors contained in this cluster to reflect the semantic
information represented by this binary attribute, as shown
in Figure 2.

2. Experimental Setting

2.1. Descriptions of Datasets

For open-set recognition (OSR) task, we follow the fine-
grained semantic-shift open-set benchmark proposed by
[11], including CUB-200-2011 [12], Stanford-Cars [4], and
FGVC-Aircraft [6], and we use the same open-set splits.
CUB-200-2011 is a fine-grained bird dataset containing 200
categories and 11,788 images. Stanford-Cars is a dataset
that consists of 16,815 images of different vehicles be-
longing to 196 distinct categories. FGVC-Aircraft contains
10,200 images of aircraft, with 100 images for each of 102
different aircraft model variants. These datasets provide a
comprehensive benchmark for our algorithm and span a di-
verse range of domains. Besides, we conduct experiments
on attribute datasets including AWA2 [5] and LAD [14].
These datasets contain category-level attribute labels an-
notated by human experts. The AWA2 dataset comprises
37,322 images of 50 different animals with 85 attributes.
We select the first 40 classes as known categories and the
remaining 10 classes as unknown categories. The LAD
dataset [14] comprises 78,017 images distributed across five
major categories (animals, fruits, transportation, electrical
appliances, and hair), 230 categories, and 359 semantic
and visual attributes labeled at the category level. We con-
duct experiments on the vehicle subclasses within the LAD
dataset, consisting of 50 classes.



Table 1. Results on the OOD detection task. AUR stands for AUROC and FPR represents FPR95.

ID Dataset Method iNaturalist SUN Places Texture Average
AUR ↑ FPR ↓ AUR ↑ FPR↓ AUR ↑ FPR ↓ AUR ↑ FPR ↓ AUR ↑ FPR ↓

CUB
MSP 97.23 9.08 94.55 16.01 90.80 25.08 96.46 12.48 94.76 15.66
MCM 88.14 42.26 96.24 16.85 94.36 25.21 98.19 8.70 94.23 23.26

MCAS(Ours) 99.55 2.24 98.84 5.18 98.99 4.43 98.99 4.56 99.09 4.10

Stanford-Cars
MSP 96.54 16.26 98.87 4.42 97.67 9.47 95.41 17.89 97.12 12.01
MCM 99.52 0.73 99.80 0.34 99.58 1.22 99.81 1.24 99.68 0.88

MCAS(Ours) 99.65 1.37 99.81 0.46 99.68 0.88 98.05 5.62 99.68 2.08

FGVC
MLS 91.80 33.11 93.88 21.73 90.47 82.08 91.40 28.28 91.89 41.30
MCM 48.96 94.77 76.24 65.10 72.34 69.70 60.21 84.54 64.44 78.53

MCAS(Ours) 96.22 14.60 97.83 4.24 97.30 7.88 94.81 12.34 96.54 9.77

2.2. Training Details

All the networks are trained on a system equipped with
1×NVIDIA RTX4090 (24G). For the semantic-shift open-
set benchmark, we use ResNet-50 as the image encoder. For
the remaining attribute datasets, we utilize ResNet-18 as the
image encoder. The attribute branch and the classification
branch are both composed of a single fully connected layer
and a linear layer. The dimensionality of the fully connected
layer is set to 512. For all the networks used in the fine-
grained semantic shift open-set benchmark, a batch size of
32 samples is used with 8 workers for data loading. The im-
ages are resized to a size of 448. For the attribute datasets,
a batch size of 128 is chosen, and the images are resized
to a size of 224. Stochastic Gradient Descent (SGD) is em-
ployed with a weight decay of 1e-4 and a momentum of 0.9.
The initial learning rate for all parameters is set to 5e-4. For
all training data, we use RandAugment and set the param-
eters m=30 and n=6. For the parameter λ that controls the
weighting of LC and LA, we set it to 0.5. The total number
of training epochs is set to 200.

3. Additional Results
3.1. Experiments on OOD Detection Task

To further validate the effectiveness of our methods
across different domains and datasets, we conduct experi-
ments on the out-of-distribution (OOD) detection task. Un-
like OSR, the unknown samples for OOD detection of-
ten come from different distributions. We use the known
classes from the dataset we used for OSR in the main pa-
per as the in-distribution (ID) data. Following [7, 8], we
use several commonly used OOD datasets: iNaturalist [10],
SUN [13], Places365 [15], and Texture [3]. We compare
our method with MSP and MCM, as shown in Tab. 1. Our
method demonstrates better OOD detection performance
across various ID datasets, indicating its robustness to dif-
ferent domains and datasets.

3.2. Experiments on Different Attribute Generation
Methods

We also test the OSR performance using attributes gen-
erated by LLM, as shown in Tab. 2. The results indicate that
attributes generated using either LLMs or MLLMs can im-
prove OSR performance. However, MLLMs provide more
accurate attribute descriptions due to their ability to access
images and address linguistic ambiguities. In addition, we
also test the impact of using different numbers of prompts
on the generated attributes. The content in parentheses in
Tab. 2 indicates the number of prompts. Using more instruc-
tions can enhance the diversity of the generated attributes,
which helps the model learn richer semantic information
and improve OSR performance.

3.3. Experiments on Our Plug-and-play Attribute
Learning Module

Considering that our proposed attribute learning mod-
ule is plug-and-play, we also integrate our attribute learning
module into other methods to test the impact of using at-
tributes, as shown in Tab. 3. The results demonstrate that in-
corporating attributes into various methods can indeed lead
to performance improvements for OSR.

3.4. Comparison with MLLM in Fine-Grained
Classification Task

Considering that we use MLLM to generate attributes
for the OSR task, we also test the classification accuracy of
MLLM directly, as shown in Tab. 4. Our prompts include
the names of all categories, asking MLLM to select the cate-
gory that best matches the image. Here is the instruction we
use for evaluation: ’Please complete the fine-grained image
classification task. Below is a picture of a bird; please se-
lect the label that best matches the image from the options
below: {cls0}, {cls1}...’. To avoid evaluation errors caused
by improper output formatting, we only consider the clas-
sification accuracy of MLLM when its output falls within



Table 2. Performance comparison of using attributes form LLM and MLLM. The numbers indicate the number of prompts.

Method CUB Stanford-Cars FGVC
AUROC↑ OSCR↑ AUROC↑ OSCR↑ AUROC↑ OSCR↑

LLM (4) 89.31 / 81.38 81.99 / 76.26 94.07 / 86.24 92.05 / 82.90 92.34 / 84.90 86.90 / 80.83
MLLM (1) 89.51 / 82.13 81.73 / 76.26 94.33 / 83.10 92.65 / 82.03 93.08 / 84.62 88.48 / 80.84
MLLM (4) 90.17 / 81.70 83.25 / 76.69 94.56 / 84.17 92.94 / 83.12 93.54 / 84.52 88.70 / 81.03

Table 3. The performance of different methods using MLLM-generated attributes or not.

Method CUB Stanford-Cars FGVC
AUROC↑ OSCR↑ AUROC↑ OSCR↑ AUROC↑ OSCR↑

w/o MLLM
MSP 89.68 / 81.04 82.57 / 75.78 94.38 / 85.66 91.83 / 84.06 91.95 / 82.25 84.58 / 76.79

ARPL 90.96 / 82.48 84.32 / 77.64 94.82 / 85.01 92.36 / 83.44 91.39 / 82.86 84.28 / 77.34
KPF 89.57 / 78.83 81.76 / 73.00 92.11 / 84.24 89.54 / 82.32 93.00 / 79.46 85.96 / 74.42

w/ MLLM
MSP 90.17 / 81.70 83.25 / 76.69 94.56 / 84.17 92.94 / 83.12 93.54 / 84.52 88.70 / 81.03

ARPL 91.15 / 82.46 83.88 / 77.29 94.92 / 86.41 92.68 / 84.90 94.19 / 84.23 89.13 / 80.66
KPF 89.71 / 83.00 83.49 / 78.34 94.56 / 85.45 92.83 / 84.40 91.29 / 83.88 86.84 / 80.60

Table 4. Comparison of MLLM and our method for clasification.

Method CUB Stanford-Cars FGVC

MLLM 24.72 72.92 8.14
Ours 89.04 89.51 96.94

the specified category range. However, the results indicate
that MLLM performs unsatisfactorily in classification tasks.
It only shows some effectiveness on Stanford Cars, falling
short compared to supervised training models, and performs
poorly on the other two datasets.
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