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1. Overview
In this document, we provide additional experiments and analyses. In particular:

• In Section 2, we report the full results of different counting methods on both the FSC-147 test set and our synthetic test
set.

• In Section 3, we report the results on the CARPK dataset.

• In Section 4, we report the performance of using different loss functions for training the segmentation model.

• In Section 5, we provide analysis on the patch size.

• In Section 6, we compare our proposed method with two alternative approaches to obtain pseudo masks.

• In Section 7, we report the time cost of running K-Means clustering at test time and using our trained segmentation
model.

• In Section 8, we provide additional qualitative analysis on the number of clusters.

• In Section 9, we provide additional qualitative comparisons of different counting methods on our collected real-world
test images.

• In Section 10, we provide more details about our collected test set.

2. Results on FSC-147 and Synthetic Test Set
In this section, we report the results of different class-agnostic counting methods on both the FSC-147 dataset and synthetic

test set with and without fine-tuning. As shown in Table 1, fine-tuning using the synthetic composite images improves the
performance of all methods on the synthetic test set by a large margin. FamNet+ [2], for example, shows a 10.95 error
reduction w.r.t. mean absolute error (MAE) on the validation set and and a 9.56 error reduction w.r.t. MAE on the test set. At
the mean time, the performance of all methods on FSC-147 test set drops after fine-tuning. As discussed in the main paper,
learning a single model to distinguish and count simultaneously is challenging, leading to the observed performance trade-off.
In addition, we present the results of using an additional model specifically for segmentation (denoted as ‘seg-then-count’),
which has an error rate of 14.34 on the validation set and error rate of 11.13 on the test set.

3. Results on CARPK
In this section, we test our models’s generality on a car counting dataset CARPK [1] following previous methods [2, 3].

CARPK contains 1,448 images of parking lots in a bird view, which differs significantly from the images in FSC147. As
shown in Tab. 2, our method slightly outperforms BMNet [3] and SAFECount [4] on CARPK. We note that our approach
is designed to mask out distracting objects, which is generally not a significant issue in CARPK. Unlike FSC-147, which
includes 147 categories, CARPK focuses solely on counting cars, which are easy to distinguish from potential distractors
like trees and people. Therefore, our segment-and-count method does not show significant improvements in this context. We
have included the results in the revision.
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Method Training FSC-147 Synthetic
Set Val MAE Test MAE Val MAE Test MAE

FamNet [2] FSC-147 24.32 22.56 18.15 22.22
FSC-147+Synthetic 30.88 ( + 6.56) 28.40 ( + 5.84) 17.30 ( - 0.85) 20.75 ( - 1.47)

FamNet+ [2] FSC-147 23.75 22.08 27.74 29.90
FSC-147+Synthetic 29.45 ( + 5.70) 26.93 ( + 4.85) 16.79 ( - 10.95) 20.34 ( - 9.56)

BMNet+ [3] FSC-147 15.74 14.62 31.09 39.78
FSC-147+Synthetic 24.24 ( + 8.50) 20.89 ( + 6.27) 25.73 ( - 5.36) 29.83 ( - 9.95)

SAFECount [4] FSC-147 14.42 13.56 22.57 26.40
FSC-147+Synthetic 27.65 ( + 13.23) 27.24 ( + 13.68) 14.27 ( - 8.30) 15.79 ( - 10.61)

Seg-then-Count - 18.55 20.68 14.34 11.13

Table 1. Results of different methods on FSC-147 test set and our synthetic test set. Both fine-tuning the existing models and training an
additional model for segmentation (denoted as ‘seg-then-count’) effectively alleviates the counting-everything issue.

FamNet [2] BMNet [3] BMNet+ [3] SAFECount [4] Ours

MAE 18.19 8.05 5.76 4.91 4.74
RMSE 33.66 9.70 7.83 6.32 6.29

Table 2. Performance on the CARPK dataset.

4. Ablation on Loss Functions for the Segmentation Model
We choose L2 loss for training the segmentation model in the main experiments. In this section, we experiment with an-

other commonly used loss function, cross-entropy loss and report the results in Table 3. We observe comparable performance
between the two loss functions.

Loss Synthetic Test Real Test
Function Val MAE Val RMSE Test MAE Test RMSE MAE RMSE

Cross-entropy 14.11 26.62 11.39 16.74 7.38 13.31
L2 14.34 26.03 11.13 16.96 6.97 13.03

Table 3. Performance of using cross-entropy loss and L2 loss.

5. Ablation on Patch Size
When computing the pseudo masks, each pixel on the mask is associated with a a region in the original image. In our

main experiments, we use the mean size of the annotated exemplars. In this section, we explore alternative configurations,
including the minimum and maximum sizes of the annotated exemplars. The results are summarized in Table ??. We observe
that using the mean size yields slightly better performance.

Patch Synthetic Test Real Test
Size Val MAE Val RMSE Test MAE Test RMSE MAE RMSE

Min 14.93 27.11 11.74 17.25 7.01 13.18
Max 15.37 28.58 12.06 17.44 7.33 13.29
Mean 14.34 26.03 11.13 16.96 6.97 13.03

Table 4. Analysis on the patch size.

6. Ablation on Pseudo-labeling Method
In Section 5.1 of the main manuscript, we compare our proposed clustering-based pseudo-labeling method with two other

pseudo-labeling methods. Parts of the results were not included due to space constraints. We present the complete comparison
results in this section, including the root mean squared error (RMSE) of all methods and the results of using pseudo masks
from the dot annotations with different box sizes.

6.1. Comparing with Pseudo-labeling via Binarizing Similarity Maps

We first compare our proposed method with pseudo-labeling via binarizing the similarity map between the image and the
exemplar. Specifically, we use a pre-trained feature extractor to extract the feature maps from the image and the exemplar.



Then we correlate the pooled exemplar feature with the image feature to get the similarity map. The pseudo mask is obtained
by binarizing this similarity map with a threshold. We experiment with different thresholds and the results are summarized in
Table 5. We observe that the threshold for binarizing similarity maps has a large impact on the final performance. When the
threshold is set to 0.4, the error rate achieves the lowest on the synthetic set, i.e., an MAE of 20.91 on the validation set and
22.95 on the test set. Our proposed method outperforms binarizing similarity maps by a large margin, achieving an MAE of
6.97 on the real-world test set.

Pseudo
Masks Threshold Synthetic Test Real Test

Val MAE Val RMSE Test MAE Test RMSE MAE RMSE

w/o Mask - 32.46 45.25 42.22 59.95 24.68 41.70

Similarity Map

0.2 31.35 41.90 38.63 53.00 24.94 37.60
0.4 20.91 34.18 22.95 32.74 11.08 19.78
0.6 27.12 44.88 27.52 40.09 17.93 29.76
0.8 30.50 47.79 32.60 44.07 20.67 31.85

K-Means Clustering - 14.34 26.03 11.13 16.96 6.97 13.03

Table 5. Comparison with pseudo-labeling via binarizing the similarity map between the image and the exemplar. Our proposed method
consistently outperforms binarizing similarity maps using different thresholds.

6.2. Comparing with Pseudo-labeling from Dot Annotations

An alternative way to obtain pseudo-labeled data for training the segmentation model is to create pseudo boxes from
dot annotations. Specifically, we create a pseudo box centering around each annotated dot. These pseudo boxes form a
mask containing all the object dots. We experiment with three different sizes of pseudo box, i.e., the mean, minimum and
maximum size of all exemplars. The performance of the model trained on these masks is shown in Table 6. Our proposed
method outperforms pseudo-labeling with dot annotations on both the synthetic test set and our collected real-world test
set consistently. On our collected test set, for example, the lowest MAE by pseudo-labeling from dot annotations is 8.57,
which is a 22.0% error increase compared with our method. The results validate the advantage of our proposed method over
pseudo-labeling using dot annotations.

Pseudo
Masks Box Size Synthetic Test Real Test

Val MAE Val RMSE Test MAE Test RMSE MAE RMSE

w/o Mask - 32.46 45.25 42.22 59.95 24.68 41.70

Dot Annotation
Mean 18.93 35.30 12.48 21.51 9.26 19.23
Min 18.46 34.08 13.67 23.02 8.57 16.67
Max 20.10 39.82 13.76 23.77 8.73 16.97

K-Means Clustering - 14.34 26.03 11.13 16.96 6.97 13.03

Table 6. Comparison with pseudo-labeling from dot annotations. Our proposed method achieves lower counting errors on both the synthetic
test set and our collected real-world test set.

7. Inference Time Comparison
In Section 5.2 of the main manuscript, we show that using the trained segmentation model to get object masks consistently

outperforms running K-Means at test time. In this section, we compare the inference time of these two approaches. The
average time costs (per image in second) are summarized in Table 7. As shown in the table, running K-Means results
in a significantly higher time consumption. As the value of K increases, the time consumption increases accordingly. In
comparison, our trained segmentation model only results in marginal additional computation time, i.e., 0.015s per real test
image and 0.012s per synthetic image. Using our trained model to obtain the objects masks is much faster than running
K-Means at test time.

8. Qualitative Analysis on the Number of Clusters
In this section, we provide additional qualitative analysis on how the number of clusters, K, affects the final counting

results. As shown in Figure 1, we visualize a few input images and the corresponding density maps when using masks



Test w/o K-Means Segmentation
Set mask k = 2 k = 3 k = 4 k = 5 k = 6 Model

Real-world set 0.047 0.722 0.848 0.970 1.069 1.161 0.061
Synthetic set 0.021 0.767 0.862 0.924 1.012 1.061 0.033

Table 7. The average time cost of running K-Means and using our segmentation model on the collected test set and our synthetic test set.
All results are in the unit of seconds. Our proposed method only takes around 30 to 60 ms, which is much faster than K-Means.

computed from K-Means and using masks predicted by our segmentation model. The choice of K has a large effect on the
counting results: a small K might lead to over-counting while a large K might cause objects of interest to be masked out.
The optimal K varies from image to image, and it is non-trivial to determine the optimal K for an arbitrary image. Instead,
using our trained segmentation model consistently produces accurate object masks and density maps based on the provided
exemplars.

K = 2 K = 4 K = 6w/o mask OursInput
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w/ Seg. Maskw/o Seg. Mask K = 2 K = 4 K = 6Input

Figure 1. Qualitative analysis on the number of clusters. We visualize a few input images together with the corresponding annotated
exemplar (bounded in a dashed white box) and the density maps when using masks computed from K-Means and masks predicted by our
segmentation model. We only visualize one exemplar per image here for simplicity. Predicted counting results are shown in the top-left
corner. The density maps under the optimal K are framed in green. The value of K has a large effect on the counting results and the
optimal value of K varies from image to image.

9. Qualitative Results
In this section, we provide additional qualitative results of using our trained segmentation model for class-agnostic object

counting. In Figure 3, we present a few input testing images, the corresponding annotated bounding box and the density maps
produced by different counting methods. As can be seen from the figure, when there are objects of multiple classes present
in the image, previous methods fail to distinguish them accurately, which often leads to over-counting. In comparison, the
density map after applying our segmentation model highlights the objects of interest specified by the annotated box.

10. Details on the Collected Real-world Test Set
Although the current dataset for class-agnostic counting, FSC-147 [2], contains a large number of images with various

object instances, the objects within each image are mostly from a single dominant class. However, in practice, there can be



Figure 2. Sample images from FSC-147 dataset and our collected real-world test set. (a). Images from FSC-147 mostly contain objects
from a single dominant class. (b). Images from our collected test set contain objects from multiple classes.

objects from multiple classes in the image, which is more challenging since the counter needs to selectively count only the
objects of interest. To evaluate the performance of different methods in this practical scenario, we collect and annotate a new
test set of 450 images, in which objects from different categories are present. For each image in this test set, there are at least
two categories whose object instances appear multiple times. We provide dot annotations for 600 groups of object instances.
For each group, we randomly select 1 to 3 object instances as exemplar instances and annotate them with bounding boxes.
Some sample images are shown in Figure 2. Our test set includes objects of different categories mixed together in various
ways, including overlapping, adjacent placement, and random distribution. In addition, the objects vary in scale, ranging
from small items like beans and peas to larger items like apples and watermelons. Overall, 76 out of 450 images contain
objects of varying scales. We observe that the model’s performance on these images is comparable to its performance across
the entire test set.
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Figure 3. Qualitative results on our collected real-world test set. We visualize a few input images, the corresponding annotated exemplar
(bounded in a dashed white box) and the predicted density maps. Predicted object counts are shown in the top-left corner. Using our
trained segmentation model, the predicted density maps highlight the objects of interest specified by the annotated box, which leads to
more accurate object counts.
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