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A. Perceptual Loss

When deep features are used as a loss function, two types
of metrics are typically considered: style loss and content
loss [6]. We let F l = ϕl(x) ∈ RHl×Wl×Cl be the activa-
tion map of the l-th layer of a convolutional neural network
(CNN) ϕ when processing the image x. Likewise, we let F̂ l

the activation map from the image x̂ using the same network
ϕ. The network ϕ and its layer(s) l to be used are a design
decision. While the de facto standard for l is the first five
convolutional layers of the VGG network, Zhang et al. [13]
demonstrated that other pretrained networks perform simi-
larly well. The style loss is the pixel-wise comparison be-
tween the Gram matrices Gl ∈ RCl×Cl and Ĝl ∈ RCl×Cl

respectively computed from F l and F̂ l:

Ll
style(x, x̂) =

Cl∑
i=1

Cl∑
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(Gl
i,j − Ĝl

i,j)
2. (1)

The Gram matrix is the map of the inner products be-
tween the 2D slices of the activation map in the channel
direction, thus it is a symmetric 2D matrix:
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and similarly,

Ĝl
i,j =

Hl∑
h=1

Wl∑
w=1

F̂ l
h,w,iF̂

l
h,w,j . (3)

In practice, the Gram matrices are computed efficiently
by vectorizing the first two dimensions (H and W) of the
feature map and then taking the inner product. Since the
Gram matrix is essentially a correlation between the re-
sponses of different channels, Ll

style is agnostic to spatial
information in the input images x and x̂. The final style
loss is the summation of the style losses of each layer:

Lstyle(x, x̂) =

L∑
l=1

Ll
style(x, x̂). (4)

The contents loss is a pixel-wise comparison between
deep features:

Lcontent(x, x̂) =
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Ll
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where
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Since the spatial information of the input image is pre-
served in the activation maps (e.g., [4,7]), the content loss is
considered a structural loss. Gatys et al. [5] used the style
loss for texture synthesis. Gatys et al. [6] and Johnson et
al. [7] used a combination of the style loss and the content
loss for neural style transfer. The learned perceptual image
patch similarity (LPIPS) metric [13] is based on the content
loss, but learnable weight is applied to Fl for each l. The
deep image structure and texture similarity (DISTS) met-
ric [4] introduced a more sophisticated approach, inspired
by the structural similarity (SSIM) metric [12], by incorpo-
rating both content and style terms using the mean and the
variance of each feature map in each layer l.

Note that, to further explore the style loss, we also tested
other pooling techniques in the VGG network instead of the
default max pooling layer: both the average pooling [5, 6]
and weighted L2 pooling [4] that is expected to help avoid
aliasing artifacts both theoretically but did not show im-
provements in our experiments.

B. Variational Autoencoder
The variational autoencoder (VAE) is a probabilistic gen-

erative model that extends variational Bayesian inference to
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a vanilla autoencoder composed of an encoder and a de-
coder. The encoder encodes the input data x to a latent rep-
resentation z ∼ Encoder(x) = q(z | x). The latent vector
z is sampled from the trained posterior distribution q(z | x)
and is also called a feature or encoding vector. The second
part reconstructs the input image from the latent vector z,
x̂ ∼ Decoder(z) = p(x | z), where p(x | z) is the trained
posterior distribution of the input image. The encoder can
be seen as a feature extractor and decoder a generator. VAE
regularizes the encoder by imposing a prior over the latent
distribution p(z), which is typically the isotropic multivari-
ate Gaussian distribution z ∼ N (0, I), so the encoded fea-
ture z has characteristic of being independent unit Gaussian
random variables. This ability to control the distribution of
the latent space is an advantage of VAE over a vanilla au-
toencoder in our application as mentioned in the main text.
The loss when training VAE is the summation of the nega-
tive expected log likelihood (the reconstruction loss) and a
prior regularization term:

LVAE = −Eq(z|x)

[
log

p(x | z)p(z)
q(z | x)

]
= Lrecons + Lprior,

(7)
where

Lrecons = −Eq(z|x) [log p(x | z)] (8)

and

Lprior = DKL (q(z | x) ∥ p(z)) . (9)

DKL is the Kullback-Leibler divergence, which mea-
sures the difference between the distributions q(z | x) and
p(z). In practice, the negative log-likelihood term Lrecons

is an element-wise measure such as binary cross entropy
(BCE) and mean squared error (MSE) determined by the
type of data.

C. Loss function
We narrow down the choice of our loss functions to per-

ceptual losses: DISTS, LIPPS (VGG-based), and LPIPS
(SqueezeNet-based) losses. We also consider the original
style loss [6] and a simplified style loss [4] using the fea-
ture maps from the first five convolutional layers of the
VGG network. To select a suitable reconstruction loss func-
tion in our VAE among the five candidates of the similar-
ity measures, we have conducted a content-based image
retrieval test using the datasets that do not contain invalid
pixels (Tab. 1). For a given query image, similar images
are searched and retrieved from a database, and the good-
ness of the retrieval is evaluated. We used the standard
retrieval metrics: precision at 1 (P@1) and mean average
precision (MAP). P@1 is the equivalent of the k-nearest

neighbors (k-NN) classification when k=1; thus, the score
can be seen as a classification accuracy. We used four tex-
ture image datasets: colored and grayscale (original) Bro-
datz [1], KTH-TIPS2b [2, 10], and our own RockTexture-
Lib64 (See the main text). We selected KTH-TIPS2b and
Brodatz among other standard texture datasets based on two
criteria for the relevance to our rock particle datasets: (1)
texture-filled image as opposed to localized texture, and (2)
images taken in a controlled environment. We resized their
images to 64×64, which corresponds to the size of our train-
ing images. As shown in Tab. 1, the simplified style loss
showed the best performance with our RockTextureLib64
dataset. Its scores are also stable across four datasets com-
pared with other similarity measures. A reason of the in-
stable results of LPIPS and DISTS might be their trainable
weight parameters that are optimized for specific scale of
the features in images larger than 64×64. Based on those
observations, we chose the simplified style loss as our re-
construction loss function. Details about the datasets and
the texture image retrieval test using the standard size can be
found in Section D in this Supplementary Material. Thus,
we define our VAE loss as

LVAE = Lstyle simple + βLprior (10)

where β is a weighting parameter that helps both the recon-
struction loss Lstyle simple and the regularization term Lprior

smoothly decrease during training.

D. Datasets for Image Retrieval Test
We describe further details of the texture image dataset

used in the image retrieval test in Section C in this Supple-
mentary Material.

D.1. Brodatz

The dataset originally contains a total of 112 images
of different textures with the consistent size of 640×640
(Fig. 1). One image shows one type of texture, and the
texture is mostly homogeneous with a few exceptions. We
follow the procedure in [4] for the Brodatz datasets in
both precision at 1 (P@1) and mean average precision
(MAP) computations: we cropped each image into nine
non-overlapping patch images with the size of 213×213,
which generates a total of 1008 images. For the P@1 test,
we used five patches for the database and two for query
from each texture (a total of 112 × 5 = 560 patches and
112 × 2 = 224 patches for queries and database, respec-
tively). Since [4] uses the remaining two patches to select
k, our test is a constrained version of their test (i.e., more
challenging), but we believe the results are comparable with
their results. For the MAP test, we used three patches for
queries, and the remaining six patches as database (a to-
tal of 112 × 3 = 336 and 112 × 6 = 732 for queries and



Table 1. Results of texture image retrieval test comparing five texture similarity measures. The sizes of images are 64×64 for all the
datasets. The scores are the average of more than one test, and the standard deviations are shown in the parentheses. Two top scores in
each column are marked in bold.

Colored Brodatz
(64×64 resized)

Grayscale Brodatz
(64×64 resized)

KTH-TIPS2b
(64×64 resized)

RockTextureLib64
(64×64 center crop)

P@1 MAP P@1 MAP P@1 MAP P@1 MAP

LPIPS (VGG) [13] 0.823 (0.016) 0.675 (0.005) 0.987 (0.008) 0.941 (0.003) 0.670 (0.032) 0.579 (0.023) 0.533 0.065
LPIPS (Squeeze net-based) [13] 0.983 (0.008) 0.931 (0.005) 0.698 (0.019) 0.540 (0.006) 0.620 (0.054) 0.524 (0.020) 0.606 0.324

DISTS [4] 0.998 (0.003) 0.971 (0.003) 0.896 (0.020) 0.762 (0.005) 0.695 (0.023) 0.572 (0.025) 0.648 0.332
Style loss [5] 0.992 (0.004) 0.956 (0.004) 0.923 (0.013) 0.762 (0.004) 0.697 (0.017) 0.496 (0.018) 0.589 0.271

Simplified style loss [4] 0.992 (0.003) 0.965 (0.005) 0.938 (0.008) 0.820 (0.005) 0.739 (0.013) 0.580 (0.018) 0.663 0.321

KTH-TIPS2b

Colored Brodatz

Figure 1. Examples of texture images from the KTH-TIPS2b and
Colored Brodatz datasets. From the KTH-TIPS2b dataset, two
randomly selected examples from 11 categories are shown. From
the Colored Brodatz dataset, 22 randomly selected examples are
shown.

database, respectively). In both cases, the images used for
database and for query are randomly selected, and the test
is repeated 10 times with different random seeds. We use
both colored and grayscale (original) versions of the Bro-
datz datasets. Recent image classification techniques have
good score with Brodatz dataset (e.g., [9]); thus we treat this
dataset as relatively easy case of the image retrieval test.

D.2. KTH-TIPS2b

The KTH-TIPS2b dataset is composed of 4752 images
from 11 material categories (Fig. 1). Each material category
is represented by four samples, and 108 images are taken
per sample with all the combinations of three poses, four
illuminations, and nine scales. Among 4752 images, 4509
images (94.9%) have the size of 200×200. In the previous
works, the images are typically resized to a fixed size and
used for evaluation. In our case, we resize all the images
to 64×64. We follow the convention and use the standard
four train-test split (e.g., [2, 3]) that is predefined to com-
pute P@1 and MAP. One set of images is used for training
(database) and three other sets are used for testing (query).
Evaluation is run on four possible combinations of sets, and
final score is the average of the four scores. This is a more
challenging dataset, since some samples of different cate-

Figure 2. Basic statistics of the rock particle images from Rock-
TextureLib (N=12055). Left: Size (heights and widths combined)
distribution of rock particle images. Middle: Proportion of the
background pixels (white area) in the image. On average, 25.8%
of the pixels is the invalid background. Right: Mean color.

gories are visually similar and challenging, such as wool
vs. cotton (e.g., [11]).

D.3. RockTextureLib

The rock particle instance images in our RockTexture-
Lib dataset vary in size (Fig. 2, left). The H×W size of the
smallest instance in terms of pixel area is 18×19 and the
largest one is 703×504. The rock particle instance images
always contain background pixels at the corners in the im-
age (Fig. 2, middle). On average, about 25.8% of the pixels
are background, and the proportion of the background pix-
els vary depending on the shape of the rock particle. The
color of most of the rock particle are close to the grayscale
line connecting 0 to 255, where R, G, B have the same val-
ues (Fig. 2, right).

While the Brodatz and KTH-TIPS2b datasets do not con-
tain any background pixels, the rock particle dataset does.
This prevents a fair comparison of the tested five similarity
measures (see the main text) since they are not designed to
ignore background pixels. Accordingly, we selected 6595
rock particle images, composed of 1319 images for each
of five classes that are large enough and used the 64×64
center-crop images that do not contain background pixels.
This dataset is referred to as RockTextureLib64 in the main
text, and we used the 64×64 center crop of the RockTex-
tureLib64 images in the retrieval test.



Input image

Reconstructed
image

Figure 3. The input image (top row) and the corresponding recon-
structed image (bottom row).

E. Image Retrieval Test (Standard Image Size)

We used the 64×64 resized images from Brodatz and
KTH-TIPS2b dataset and found that the simplified style loss
performed well in the main body. To confirm the superior-
ity of the simplified style loss, we conducted the same ex-
periment with the standard image size. Table 2 shows our
results of the texture retrieval test using the standard image
size. DISTS and the simplified style loss provides the best
results across most cases. Notably, their scores do not drop
from the colored version to the original grayscale version of
the Brodatz datasets, suggesting that the texture information
is well captured in the similarity computation. The results
of LPIPS (VGG based) and DISTS are comparable with the
same experiment in [4] using Brodatz datasets.

F. Training Details

The training was carried out by optimizing the loss func-
tion described in the main text to learn the parameters in
the encoder, decoder, and the texture codebook. The bal-
ancing weight β was tested and set to 10-7. The parameters
of the VGG network used in the simplified style loss were
fixed during training. The training was carried out for 5000
epochs with the batch size of 256. Training for one epoch
took about 80 seconds with an NVIDIA RTX A5500 GPU.
The Adam optimizer with the learning rate of 10-4 was used
during the entire training. The scheduler for the learning
rate of the optimizer did not improve the results. As men-
tioned the main text, all the 54759 images in the legacy
well dataset were used as a training dataset. The training
data is split into training and validation datasets with the
ratio of 0.8:0.2. The validation dataset was used to moni-
tor the losses to detect the overfitting. The decrease of the
Lstyle simple became negligible and the Lprior started to in-
crease at epoch 3500, thus we use the model trained up to
epoch 3500. Our model was developed in PyTorch. The
inference time of the trained model per an instance image
was 9.6×10-4 seconds with GeForce RTX 3060 GPU and
7.15×10-3 seconds with an 8 core CPU.

The images generated from the decoder showed good vi-
sual quality capturing the color and texture information of
the input images (Fig. 3). The artificially added holes are
safely ignored. The perceptual loss is known to generate
checkerboard artifacts in some cases [8], but this was not
the case with our model.

Figure 4. Left: Standard deviation of the features. Right: Median
absolute value shift before and after 90 degrees rotation.

Figure 5. Relative feature proximity between two images: an im-
age and its rotated version by 90 degrees. The proximity (how they
are close to each other) is measured by the percentage computed
by the similarity rank divided by the total number of data (12055).
Each of 12055 images are sampled. The smaller the percentage,
the more invariant the features are.

G. Rotation Invariance Analysis
The extracted features from rock particles are ideally ro-

tation invariant: the feature values of the rotated version of
the image should be exactly the same as the ones of the
original image. This is a challenging topic due to the na-
ture of the operation of the convolution. We observed that
the median change of the feature values after rotating the
images by 90 degrees was kept low compared with the stan-
dard deviation of each feature (Fig. 4). To evaluate it more
relatively, we checked if the original image is in the neigh-
borhood of the rotated version of the image in the data space
(Fig. 5). It showed that in more than half of the cases, the
rotated images are in the proximity of the original images
are in the 5% of all the data. Although convolution kernels
are not designed nor trained to provide rotation invariance,
the rotation invariance somewhat exists, probably thanks to
the perceptual losses that is used during training.
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