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This is the supplementary material for ”MDCN-PS:
Monocular-Depth-guided Coarse Normal attention for Ro-
bust Photometric Stereo” (our main paper). We provide de-
tails of the datasets, additional experimental results, imple-
mentation details, limitations, and feature works.

A. Datasets
A.1. Example of PS Objaverse Dataset

We present an example of the PS-Objaverse dataset
(Sec. 3.3 in main paper). The PS-Objaverse dataset con-
sists of ten RGB images with a resolution of 512× 512 and
the corresponding ground truth normal images, comprising
a total of 30,488 scenes. Figure 1 shows the ten RGB im-
ages from the PS-Objaverse dataset and their corresponding
ground truth normals.

A.2. Detail of Blender Settings

We generated a novel dataset, the PS-Objaverse dataset,
utilizing 3D models from the Objaverse dataset. Figure 2
shows the flow of PS-Objaverse dataset construction. This
paper aims to create a high-quality dataset through pho-
torealistic rendering using Blender’s Cycles rendering en-
gine [2] (Sec. 3.3 in main paper). We randomly place ten
point light sources or directional light sources on the upper
hemisphere. Then, we render an RGB image with a resolu-
tion of 512 × 512 pixels for each light source. One to five
objects are randomly positioned in each scene, and a ran-
domly selected material is assigned to each object. Here,
the materials are randomly chosen from the ambientCG [1].
Note that, unlike IS23 [8], it is unnecessary to guarantee that
material categories do not overlap within the same scene.
We use the Principled BSDF to read color, roughness, and
metallicity maps from each texture file in the material set-
ting. Note that, normal and displacement maps are not used
in this setting, as their influence at a resolution of 512×512

Table 1. Detail of Blender Parameters

Parameter Value

camera.type ORTHO
exposure 0
gamma 1.0
samples 256
max bounces 10
diffuse bounces 10
glossy bounces 10
transmission bounces 10
volume bounces 10
use denoising True

is too detailed, resulting in artifacts. A composite tree is
configured for each scene to create ground truth normal
maps and depth maps. The normal maps are used for eval-
uation during training and testing, while the depth maps are
used to measure the effective number of light sources during
testing. Other detailed settings are summarized in Tab. 1.

B. Additional Results
B.1. Additional Results on Synthetic Dataset

In the section ”Results on Synthetic Data using CG-
Trader [3] and Share Texture [4]” (Sec. 4.2 in our main
paper), ten objects expected to cast shadows were selected
from CGTrader. For each object, a texture was carefully
chosen from ShareTextures and assigned into the follow-
ing six categories: Plaster, Wood, Metal, Floor, Fabric, and
Plastic. The three light sources were positioned as viewed
from directly above, as shown in Fig. 3 (a), and the camera
was placed at the center of the circle.

We show the additional results corresponding to the ”Re-
sults on Synthetic Data using CGTrader [3] and Share Tex-
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Figure 1. Examples of images and normals in our PS-Objaverse dataset
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Figure 2. Workflow for the PS-Objaverse dataset construction. 3D
models selected from the Objaverse [7] and materials randomly
picked from ambientCG [1] are rendered using Blender [2]. Dur-
ing the selection of 3D models, models scanned from real-world
data are filtered by tags, and models with a higher number of ver-
tices compared to 3D models are prioritized. The lower part shows
the generated images with their corresponding normal maps.

ture [4]” (Sec. 4.1 in our main paper). Figure 4, and 5, sim-
ilar to Fig. 5 in our main paper, shows the input images, the

(a) (b)

Figure 3. Light location: (a) Synthetic Dataset, (b) Photogramme-
try Dataset.

lighting conditions for each region, the results of the pro-
posed method, the results from IS23 [8], and the ground
truth normal information, respectively. As mentioned in the
main paper, it can be confirmed from Fig. 4, and 5 that our
method achieves accurate normal estimation, even in areas
where the light source is insufficient. These results show
that the proposed method is effective even under challeng-
ing lighting conditions.

B.2. Additional Results on the DiLiGenT dataset

We present a qualitative evaluation using two input im-
ages from the DiLiGenT dataset [9] (Sec. 4.2 in our main
paper). The estimation results of HARVEST and READ-
ING are shown in Fig. 6. These objects, known for
their highly non-convex geometry and tendency to create
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Figure 4. Qualitative evaluation of our synthetic dataset for ID1, ID2, ID4, ID5. The input images, the number of effectively illuminated
light sources for each pixel, the estimation results by our method, the estimation results by IS23, and the ground truth are shown, respec-
tively. Each estimation result indicates the error between the estimated normals and the ground truth.
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Figure 5. Qualitative evaluation of our synthetic dataset for ID7, ID8, ID9, ID10. The input images, the number of effectively illuminated
light sources for each pixel, the estimation results by our method, the estimation results by IS23, and the ground truth are shown, respec-
tively. Each estimation result indicates the error between the estimated normals and the ground truth.
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Figure 6. Qualitative evaluation on the DiLiGenT dataset. The input images, the estimation results by our method, the estimation results
by IS23, the estimation results by SH19, and the ground truth are shown, respectively. Each estimation result indicates the error between
the estimated normals and the ground truth.

shadows, are considered the most challenging benchmarks,
adding significant difficulty to the estimation. Figure 6
shows the results of the proposed method, the results from
IS23 [8], the results from CH19 [6], and the ground truth
normal information, respectively. These results also show
the superiority of the proposed method over the conven-
tional methods in visual comparisons. Note that, for each
scene, 001.png and 002.png were used as input images.

B.3. Additional Results on Photogrammetry dataset

In the evaluation without object masks, 3D reconstruc-
tion was performed using photogrammetry on real image
data in the Mip-Nerf360 dataset [5]. The 3D data was then
rendered using Blender. When rendering, the texture from
the 3D reconstruction is applied to the Base Color of the
Principled BSDF. Figure 3 (b) shows the arrangement of
the light sources as viewed from above, with the camera
positioned at the center of the circle. During rendering, the
camera position was adjusted so that the model occupies the
entire field of view. Special attention was paid to ensuring
that the foreground and background were distinguishable.

We present the remaining results, i.e., counter and stump,
corresponding to the ”Evaluation without Object Mask”
(Sec. 4.4 in our main paper). Figure 7, similar to Fig. 6 in
the main paper, shows examples of input images, the results
of the proposed method, the results from IS23 [8], and the
ground truth, respectively. As mentioned in the main paper,
it can be seen from Fig. 7 that our method has improved
normal estimation accuracy, particularly in regions classi-
fied as background. These results show that our method is
effective even in scenarios involving background regions.

C. Implementation
C.1. Implementation Details

We describe the implementation details of the proposed
method. The training loss was calculated using MSE loss,
where the l2 error between the predicted and ground truth
surface normal vectors was computed. The accuracy was
evaluated based on the mean angular error (MAE) between
the predicted normal map and the ground truth normal map,
with angles measured in degrees. The batch size was set to
8, with an initial learning rate of 0.0001 and a weight decay
of 0.05. The number of input training images per batch was
randomly selected between 3 and 6. We use fixed weights
for Depth Anything V2 and use a pre-trained model named
“Depth-Anything-V2-Large”. The training was performed
on four NVIDIA V100 cards for approximately seven days.
The inference time depends on the number and resolution
of the input images.

The dataset is augmented during training to introduce
more variation in the training examples. Specifically, we
randomly flip the images horizontally or vertically or rotate
them by 90 degrees. All data augmentations are applied
with a 50% probability.

C.2. Limitations and Future Works

Finally, we discuss the limitations and future works of
the proposed method. Monocular Depth Estimation is not
always a panacea; generally, a depth obtained by monocular
depth estimation can be erroneously estimated in confus-
ing targets, such as photorealistic paintings. The monocular
depth may not be a practical guide for Coarse Normal atten-
tion for such targets.

Monocular depth estimation is typically trained using a
dataset based on the perspective view. Note that while the
obtained coarse depths may contain errors due to the pro-
jection method, the proposed method, which uses the coarse
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Figure 7. Qualitative evaluation of a dataset using the 3D model reconstructed by our photogrammetry. The input images, our method’s
estimation results, IS23’s estimation results, and the ground truth are shown. Each estimation result displays the error between the estimated
normals and the ground truth.

normal as a guide in Coarse Nomal attention, outperforms
the state-of-the-art existing methods [8] as described in our
main paper. This fact suggests that, in the future, the per-
formance of the proposed method could be further improved
by developing monocular depth estimation to reduce errors
due to the projection protocol.
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