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1. Synthetic Dataset
We use the PanoHead [2] to synthesize 18,000 identities for training. Each identity is rendered with 25 pre-defined camera

views (see Figure 1 for an example).

Figure 1. An example identity generated from PanoHead, with 25 rendered views.
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Figure 2 shows an example face image with its corresponding aligned FLAME [4] mesh and a face parsing mask derived
using Pytorch FaceParsing model [1].

Figure 2. The first image is an example face image, the second image shows its corresponding aligned FLAME mesh and the last image
shows its corresponding face parsing mask.

We use the DeepFace Pytorch Toolkit [5] to estimate the age, gender, and emotion statistics on our synthetic dataset, see
Figure 3.
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Figure 3. Age, gender, and emotion distributions evaluated on the synthetic dataset.

2. Real Dataset
Our real dataset for training the reconstruction network is derived from the FFHQ dataset [3] which originally contains

70,000 face images collected from the Internet. The reason for using the FFHQ dataset is its wide coverage of faces of
various ethnicity, gender, and age groups. However, the original FFHQ dataset mainly focused on the facial region, therefore
the facial region takes more space in the aligned image. This usually causes the head not to be fullying visible in the image.
We first collect the raw images (without alignment) used by FFHQ and realign the faces using our standard to cover the entire
head. See Figure 4 for an example.

FFHQ Alignment Our Alignment

Figure 4. We realign the raw FFHQ images to cover the entire head.

We also remove images that are not usable, for example, the images with occlusions and multiple faces (see Figure 5).
The final number of images is 38,000.
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Figure 5. Example images cannot be used for training.

3. Our UV Gaussian Map
Our UV map follows the FLAME’s template. However, we do not need the neck part, and the FLAME’s mesh does not

contain a mouth interior structure. Therefore, we remove the neck region from the original FLAME’s UV map (which is the
bottom part, see Figure 6), and add a mouth interior to the empty space. Figure 6 shows the UV position map and the UV
position regularization weights.
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Figure 6. Our UV map structure (left) and UV position regularization weights (right).

Interior View of the Original FLAME Mesh

Figure 7. Our method for automatically creating the mouth interior.

We develop an automatic method to generate the mouth interior for the FLAME mesh. We first select the contour of
vertices around the mouth inside the FLAME mesh and split it to the upper line and lower line. Then we add an end line that



defines the end of the mouth interior. We interpolate the vertices to create a dense funnel-shaped structure that can roughly
represent the mouth interior. Figure 7 illustrates the approach. Note that we only need to manually select the contour of
vertices once, since all the FLAME reconstructed head meshes share the same topology. Figure 8 shows an example UV
Gaussian map, and Figure 9 shows its corresponding 3D Gaussian head.
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Figure 8. Example UV Gaussian Map. The black area indicates the invalid (unused) pixels.
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Figure 9. Effects of modifying the scales map.

4. Reconstruction Network Architecture
Our reconstruction network has an encoder-decoder structure. The encoder takes a single image as input and generates a

feature map. The decoder takes both of the feature map and the initial UV position map as input and generates the final UV
offsets. In each decoder block, we concatenate the feature map with the resized initial UV position map to inject the explicit
shape information into the decoder. Figure 10 shows the detailed architecture of our reconstruction network.

5. Training Details
5.1. Single-Image-Based Reconstruction

We use Adam optimizer with an initial learning rate of 1e-4 on synthetic data, and an initial learning rate of 1e-5 on real
data. We decrease the learning rate by 5% after every 10,000 training steps. We start the training with a rendering resolution
of 128 and gradually increase the resolution after every 100,000 training steps till the resolution is 512×512. When rendering
at 128× 128, we do not fine-tune on real data. Every time the rendering resolution is increased, we reset the learning rates.

5.2. Monocular Video-Based Optimization

We use Adam optimizer with an initial learning rate of 0.05 for both stages of training. After every 100 training steps, we
decrease the learning rate by 10%.
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Figure 10. Our single-image-based reconstruction network architecture. DB stands for decoder block.

6. More Experimental Results
6.1. Ablation Study on Training Dataset for Single-Image Reconstruction Model

We conduct an ablation study on the training dataset used for training our single-image-based reconstruction model. Our
full method uses both synthetic and real data for training. In this ablation study experiment, we train a reconstruction model
solely on the synthetic dataset. Table 1 and Table 2 show the evaluation results on the CelebAMask-HQ dataset and the
FFHQ dataset respectively. We can observe a noticeable degradation in the reconstruction quality of real images without the
use of real data during training. This outcome highlights a discrepancy between synthetic data and real data, underscoring
the essential role of real-image training in achieving balanced and accurate reconstructions.

Method Region L1 ↓ LPIPS ↓ SSIM ↑ PSNR ↑
Ours (Synthetic Data)

Facial
0.043 0.072 0.922 26.411

Ours (Synthetic + Real Data) 0.033 0.061 0.935 28.755
Ours (Synthetic Data)

Head
0.188 0.250 0.692 16.769

Ours (Synthetic + Real Data) 0.125 0.211 0.740 20.525

Table 1. Ablation Study on Training Data: Reconstruction performances (CelebAMask-HQ).

Method Region L1 ↓ LPIPS ↓ SSIM ↑ PSNR ↑
Ours (Synthetic Data)

Facial
0.061 0.092 0.896 23.707

Ours (Synthetic + Real Data) 0.040 0.071 0.922 28.030
Ours (Synthetic Data)

Head
0.178 0.213 0.747 17.157

Ours (Synthetic + Real Data) 0.088 0.155 0.813 23.184

Table 2. Ablation Study on Training Data: Reconstruction performances (FFHQ).

6.2. Ablation Study on Different Initialization Schemes

We test initializing the 3D Gaussians with the FLAME reconstruction’s shape (FLAME-initialized). The convergence
during training is shown in Figure 11. As illustrated, simply initializing the locations of 3D Gaussians without other Gaussian
parameters properly initialized leads to slow convergence speed.
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Figure 11. Convergence with different initialization schemes.

6.3. Ablation Study on UV Position Regularization Weights

We use an ablation experiment to demonstrate the importance of our UV position regularization weights mask (mask is
shown in Figure 6). In this experiment, we re-trained a reconstruction model with the position regularization weights set to
be uniform across all the 3D Gaussians. Figure 12 shows the comparisons between our original model (Best Result) and the
re-trained model (Uniform Weight). As shown, if we use uniform position regularization weights, the 3D Gaussians on the
scalp are constrained to move too far, and thus the scales of these 3D Gaussians are enlarged to match the hair. However,
this will cause the loss of fine details and blurry artifacts. If we manually reduce the scales of each 3D Gaussian, we can
observe that by giving more weight to the facial region while less weight to the rest (Best Result), we give non-facial-region
3D Gaussians more freedom to move and form the shape of hair.

Input Image Ours (Best Result) Ours (Uniform Weight)
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Figure 12. Ablation study on UV position regularization weights. The right images are the renderings of the reconstructed 3D Gaussian
head of the input image.



6.4. More Expression Reconstruction Results

We show more expression reconstruction results in Figure 13. The second column displays the reconstructed face using
our expression-aware blendmaps for rectification, while the third column illustrates the face with global rectification only.
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Figure 13. More expression reconstruction results.



7. Limitations
We found that the highest quality achievable by Gaussian Déjà-vu relies significantly on the accuracy of the FLAME

reconstruction. Additionally, our current approach does not account for lighting variations, so if the personal video was
recorded under changing lighting conditions, the resulting head avatar may exhibit visual artifacts.
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