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1. Additional Implementation Details

Since MatryODShka [1] has different input and output
format to our method, to achieve fair comparison, we re-
implement MatryODShka and match its data format with
ours. MatryODShka uses two omnidirectional stereo (ODS)
images as input and sphere sweep the images as a sphere
sweep volume (SSV). We find that four fisheye images can
provide larger FoV than the original two ODS images, so
we directly use fisheye images to construct the SSV. For
the network MatryODShka used to process SSV, we use the
same 3D CNN structure as our MSI decoder by just chang-
ing the input and output channel number. We modify the
output of the network to generate a blending weight using
soft max layer. Alpha blending is then conducted and the
final color and depth images can be rendered. Compared
with OmniMVS [5], our method additionally requires neu-
ral rendering to achieve image and depth synthesis, which
takes more memory usage. To this end, we designed a shal-
lower and narrower network structure as the backbone of
our method. The OmniMVS used for comparison is also
reimplemented using the same backbone for fairness.

For camera calibration in the real-world experiments, we
use the Scaramuzza’s camera model [4] for intrinsics and
Kalibr [2] for extrinsics. The reason for the unsatisfac-
tory results in real-world scenes is that although the selected
camera claim to have a 220° FoV, pixels that exceed 180°
only account for a small portion of the total pixels. This
leads to a serious loss of wide-angle information, which af-
fects both calibration and image synthesis.
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Figure 1. FoV comparison between real-world and virtual camera.
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2. Network Architecture

We basically follow the CNN structure proposed in [5]
and modify the output format to connect it with our NeRF
[3] MLP. The CNN network channel is declined to save
GPU memory for the additional MLP and neural render-
ing. The input of the network is four fisheye images. We
use the residual convolution blocks for the image feature
extraction, and the dilated convolution for the larger recep-
tive field. The output feature map size is half of the input
image. We use a shallow MLP that takes coordinate, di-
rection, projected color and interpolated feature vector as
input. The output color and occupancy are then rendered
into color and depth map.

3. Mechanisms

Mechanism of Sphere Sweeping: During 3D MSI re-
construction process, our method creates a cost volume by
warping the feature maps using intrinsics and extrinsics.
Therefore, the network are trained to match the features
rather than remembering the camera parameters, and the
camera arrangement is not limited to the configuration in
the paper. The best configuration is the one with the most
camera overlap.
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Figure 2. Visualization of projected MSI layer of different depth.

Mechanism of Unsupervised Training: In Fig. 7 in the
original paper, we show the results of our method with only
color loss. We can see that the depth information can be
learned (despite noisy and blurry) from the intrinsic paral-
lax between cameras. Although the input and target become



identical, the strong inductive bias in the MSI and spatial
neural rendering process prevent the network from over-
fitting. Our depth loss can provide additional prior guidance
for faster convergence and higher quality.

4. Comparisons

Compare to MatryODShka: Different from our direct
raw fisheye input, MatryODShka uses an ODS format as in-
put, which is still synthesized from fisheye or pinhole cam-
eras. During such pre-processing, the parallax information
within the original multi-view is eliminated.

Compare to Optimization-based 360 NeRF Methods:
After detailed survey, we can’t find suitable 360 NeRF
method with the same input format as ours. To com-
pare with the optimization-based NeRF method, we im-
plement NeRF-360-NGP which borrows the concept from
Mip-NeRF-360 and Instant-NGP. The results can be seen
in Fig. 5 of the original paper. Although EgoNeRF and
SOMSI also perform 360 NeRF reconstruction, they take
pre-processed panoramic images as input, which is differ-
ent from our approach (raw fiseye images as input). Such
synthesized panoramas have lost the parallax information,
which requires camera movement for 3D reconstruction.

5. Derivation Details

We give a detailed derivation of Equation (6) in the main
body. Given the ray origin r, = (04,0,,0,)T and ray di-
rection ry = (d,,d,,d,)T, the equation of the ray can be
given as:

r(z) =1, + zra, D
where z is the parameter indicating the distance along the
ray, the depth. Since the sphere equation can be writen as

22 +y% + 22 = d?, we substitute r(z) into the sphere equa-
tion:

(o, + 27, )2+ (o, + 2ra,) 4+ (ro. + 27a.)% = d*. (2)
We can simplify it to:
Tgw +T3y +r3z +22 (T% Td, + To,Td, + Tozrdz) +22 = d%.
From this, we can tell that the problem is to solve(32)1

quadratic equation and the coefficients of the quadratic
term, linear term, constant term can be represented as:

a=rkry, b=2rlr, c,=rlr,—1/ (d_l)Q. 4)

Then the original formula can be established.

6. Application Prospects

Being able to synthesize novel views in 6DoF and es-
timate depth map panoramically mean a lot to VR and
robotics.

Traditional VR contents are usually shot by image stitch-
ing, which is simply a stream of panorama images. This re-
sults in a limited 3DoF camera movement which can cause
omitted parallax information, low immersion, and VR sick-
ness. Instead, our method retains the parallax information
within the multi-camera system and achieves 6DoF render-
ing. This can bring a whole new experience to VR content
without changing the shooting equipment. Further more,
different from the existing panoramic cameras that only
support three-degree-of-freedom re-movement and editing,
the video captured by this method can be moved and edited
in the translation direction. This is of great significance for
filming and video making.

On the robotics side, being able to produce omnidirec-
tional depth estimation also helps a lot. It bring perception
in autonomous robots to a new level. Compared to LiDAR,
it is much cheaper, with wider FoV, and denser points per
frame. The novel view synthesis ability also makes driving
cars or drones under a third person’s view possible, which
benefits a lot in teleoperation and navigation.

7. Limitations

Limited by the memory size of the GPU device, our net-
work capacity is restricted and the resolution of the gener-
ated color and depth map is set to 512 x256. Also, due to the
limited computation performance, our method can only run
at around three frames per second. These limitations makes
our method hard to applied in applications with strong real-
time requirements.

At the same time, our method also requires accurate ex-
trinsic and intrinsic calibration. These parameters are used
in the warping process that turns fisheye projection into MSI
representation, which is essential to the final result. In our
real-world experiment, the generated color and depth image
both suffer from poorly calibrated cameras, which results
in blurry and artifacts. The quality of real-world generation
will degrade compared to the results from synthetic data.

Due to the usage of MSI, the free roaming of the camera
is limited inside the smallest sphere. This way, the setting of
the smallest radius can be a trade of between the nearest col-
lision limit and the virtual camera moving range. A bigger
inner sphere can lead to a wider moving range, while may
cause objects close to camera being cut off. This trade off
needs careful tuning when faced with different scenarios.

The artifacts mainly occurs when the camera has large
motion (exceed the minimum MSI sphere of 0.5m) and ob-
serves heavily occluded parts. Since the input views have
no observations on such regions, it means that the network



needs to solve a generation problem. Our method follows
the idea of MVS and aims to learn feature extraction and
matching, which lack generation ability of unseen area and
generates blurry artifacts. We hope that future research can
address this problem by introducing the ability of generative
models (e.g. inpainting methods).

Figure 3. Visualization of selected failure cases.

8. Additional Ablation Studies

We conduct additional ablation studies using regular im-
ages and fewer fisheye images settings. The results are
shown in the figure below. The ablation study without depth
map branch can be reflected in the discussion about unsu-
pervised training.
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Figure 4. Visualization of more ablation studies.

9. Additional Experiments Result

Here, we show the additional generated depth estimation
and novel view synthesis results on the OmniHouse dataset.
They are shown in Fig. 5. More visualization results can be
seen in the video in the supplementary files.
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Figure 5. Additional experiment results.
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