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Figure 1. We calibrate the affine noise model [3] with a FLIR
Flea3 Camera [2] using a greyscale test target with colorbars. The
camera is configured to have a 30 ms exposure time and 15 dB
gain. The calibration setup is illustrated in (a) and the plot of the
pixel variances against mean intensities is displayed in (b).

1. Code
Our code and data are available through our GitHub

page at https://anonymous.4open.science/
r/TaCOS-4403/. We include the implementation of
our camera design method for both the stereo camera and
monocular camera design experiments, the source code and
guidance for creating the indoor virtual environment used in
the monocular camera design experiment, and the catalog of
commonly available image sensors that we collected.

2. Additional Details on Noise Synthesis
We provide additional details on our image noise cali-

bration and generalization method.

2.1. Noise Model Calibration

We adopt the affine noise model [3] in this work. The
noise model describes a linear relationship between the vari-
ance (σ2) in image pixel intensities for different mean inten-
sity values (Ī) in terms of constant thermal noise (σt) and
intensity-varying photon noise (σ2

p Ī):

σ2 = σ2
p Ī + σ2

t . (1)

Figure 2. The noise model calibrated with 30 ms exposure time
and 15 dB gain (blue) is generalized to the 20 ms exposure time
and 12 dB gain (red), as well as 40 ms exposure time and 6 dB
gain (green). The data on the plot are captured by the physical
camera, the noise model for 30 ms exposure time and 15 dB gain
are obtained from the data as in Fig. 1 (b), while noise models for
the latter two exposure settings are obtained via our generalization
method. The plot shows that generalized noise models match the
captured data accurately. The intensities for the latter two expo-
sure settings are smaller, which is caused by lower exposure set-
tings.

Calibrating the noise model follows established meth-
ods [5, 6, 8]. In this work, we use a greyscale test target
with colorbars containing uniformly distributed grey levels
from fully white to fully black. With captured images of the
test target, we determine mean intensities and variances for
each pixel, using these values to fit the affine noise model
defined in Eq. 1.

We calibrate the noise model with a FLIR Flea3 Cam-
era [2] with a Sony IMX172 image sensor. The exposure
time is set as 30 ms and the gain is set as 15 dB. Note that
the dark current noise is safely neglected in this work as the
exposure time used (30 ms) is relatively short. The setup of
this calibration is demonstrated in Fig. 1 and we display the
plot of the obtained noise model in Fig. 1 (b).

2.2. Noise Model Generalization

The noise model in Eq. 1 is calibrated using a specific
image sensor and exposure setting. We expand the equation
so that it can be generalized to different exposure settings
and image sensors.

Consider the intensity (I) in Eq. 1 as the measured pixel
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Figure 3. We adopt a test target (a) from [1] to validate our simulator in terms of the performance of feature extraction. We compare the
relative performance of three off-the-shelf cameras, the experiment setups in the real world are shown in (b), (c), and (d), which are then
duplicated in our virtual environment.

intensity by the camera: I = EGϕ, where E and G are the
exposure time and gain respectively, and ϕ is the scene ra-
diance. Intensity changes due to exposure time setting are
reflected in the measured intensity value, therefore, we gen-
eralize the noise model to other exposure and gain settings
by multiplying the ratio of the new gain (G) and the cali-
brated gain (G0) used in the noise calibration stage. Then
we can transform Eq. 1 to obtain the noise model with new
exposure settings. For the photon noise term, replacing Ī
in Eq. 1 with the new observed intensity and multiplying it
with the gain ratio to scale the value of σ2

p. For the thermal
noise term, scaling σ2

t with the second order square of the
ratio between the new gain and the calibrated gain, the noise
model becomes Eq. 2 of the main paper.

In Fig. 2, we show the generalization of the calibrated
noise model using 30 ms exposure time and 15 dB gain to
two other exposure settings with the same camera, which
are 20 ms exposure time with 12 dB gain and 40 ms expo-
sure time and 6 dB gain. The data on the plot are captured
with the camera, while the noise models are obtained with
our derived generalization equation, which is Eq. 2 of the
main paper. This experiment validates both the noise cali-
bration and the generalisation of the noise model.

3. Additional Details on Simulator Validation

We provide implementation details for the simulator val-
idation experiments. The results of the experiments are il-
lustrated in Fig. 3 of the main paper.

3.1. Image Statistics

This experiment reuses the same test target and the FLIR
camera as the noise level calibration experiment shown in
Fig. 1 (a). In this experiment, we strictly control the dis-
tance between the test target and the camera to 50 cm, and
the illumination level at the test target as 2000 lux (mea-

0 20 40 60 80 100
Step

0

0.2

0.4

0.6

0.8

Lo
g 

Er
ro

r

3 Solutions
5 Solutions
7 Solutions

Figure 4. Training curves of 3 different solution numbers per gen-
eration, which are 3 solutions per generation, 5 solutions per gen-
eration (used in the main result), and 7 solutions per generation.
The training curves indicate that all 3 settings can achieve a similar
final performance, where the setting of 5 solutions per generation
gives the smoothest and fastest convergence as it provides a search
space that is more diverse compared to 3 solutions but also less to
explore compared to 7 solutions. The experiment runs for 1000
steps but we only display the first 100 steps for visualization.

sured with a light meter) using an LED panel light. The
light is placed above the camera with an 80 cm distance and
an angle of approximately 25°, facing downward to the test
target.

The same setup is then duplicated in Unreal Engine
(UE), which is the simulator used in our experiments. In
UE, the scene capture camera is set to have the same focal
length, sensor size, pixel number, exposure time, and aper-
ture size as the physical camera. However, we manually
tune the ISO setting in the simulator to achieve the same
brightness level as the physical camera. The rendered im-
ages are then applied with the noise model calibrated with
the physical camera.
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Figure 5. Training curves of 3 percentages of the population for
offspring generation, which are 40% of the population, 60% of
the population (used in the main result), and 80% of the popula-
tion. The curves show that using 60% of solutions provides the
fastest and smoothest convergence by balancing between explo-
ration and exploitation, which is significantly beneficial for faster
convergence. The experiment runs for 1000 steps but we only dis-
play the first 100 steps for visualization.

Table 1. Comparison of the optimized camera parameters for the
depth estimation task using the genetic algorithm with 3 initial-
izations, including initialising all the parameters at their smallest
values in the design space, initializing all the parameters at their
largest values in the design space, and initializing all the param-
eters at random values within in the design space, which is the
method taken in the main paper. The results show that the opti-
mization is insensitive to initialization.

Initialization
Camera Parameters Performance

Baseline Horizontal FOV Log Error RMSE
b (m) fov (°) ↓ ↓

Smallest 1.67• 50• 0.14• 80.7•
Largest 1.64• 50• 0.14• 78.05•
Random 1.6• 50• 0.14• 79.81•

3.2. Perception Task Performance

To validate our simulator in the performance of extract-
ing Oriented FAST and Rotated BRIEF (ORB) [7] features,
we adopt a test target used in [1], displayed in Fig. 3 (a),
that is suitable for feature extraction. We use the same illu-
mination setup in this experiment as described in Sec. 3.1.
This experiment was conducted with the RGB camera of the
Luxonis OAK-D Pro Wide camera, the FLIR Flea3 Camera,
and the Basler Dart DaA1280-54uc camera for comparison,
which are shown in Fig. 3 (b), (c), and (d). In addition, the
background of this experiment is textureless to avoid addi-
tional features, and the test target is moved and captured
at 10 locations along the same horizontal line to simulate a
translational motion for feature matching and determining
the number of inlier features, motion blur is not considered
for this experiment due to a short exposure time.

In our UE simulator, we also duplicate the setup in the
physical experiment. Similarly, we configure the scene cap-
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Figure 6. Training curves of 3 different initialization of camera
parameters for the depth estimation task used by the genetic algo-
rithm, which are starting from their smallest values, largest values,
and random values within their design space. The curves show that
the initialization does not affect the final performance but starting
from random values results in faster convergence. The experiment
runs for 1000 steps but we only display the first 400 steps for vi-
sualization.

ture camera to have the same focal lengths, sensor sizes,
pixel numbers, exposure times, and aperture sizes as the
three physical cameras, and we manually calibrate the ISO
settings to match their gain values. We calibrate the noise
models for these three cameras individually for this experi-
ment and apply their noise models to the renders. The noise
model calibration method follows Sec. 2.1.

4. Genetic Algorithm Implementation

4.1. Hyperparameter Selection

Population Size The number of solutions per generation is
selected empirically based on the number of parameters to
optimize. For example, we only optimize 2 camera param-
eters in the stereo camera design example so that we choose
a relatively small solution number (5 solutions per genera-
tion), and for a more complex problem like the monocular
camera design example, we use a larger solution number
(10 solutions per generation). This scheme is selected since
more complex design problems generally require more di-
verse solutions to search through a larger search space.
However, a larger number of solutions takes longer to con-
verge since a larger search space is explored. Conversely,
a smaller solution number gives a less diverse search space
and encounters the issue of local optima. Hence, we empir-
ically select the number of solutions in this work as illus-
trated in Fig. 4, in which we compare the training curves of
the depth estimation experiment with 3 different numbers
of solutions per generation.
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Figure 7. Comparison of captured left images, estimated depth maps, and log errors using cameras designed by our method with and
without joint optimization, the RL method (DISeR), and off-the-shelf cameras, which are RealSense D450 and ZED2i. The depth and
metrics are calculated in meters, and depth maps are capped at 1000 m. The off-the-shelf cameras fail with objects at long distances,
whereas the cameras designed by our method and DISeR achieve desirable performance for all distance ranges.
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Figure 8. The example renders from our indoor virtual environment. The top 3 images (a) are captured in the daytime scenario (20 lux)
using a lower camera gain (5 dB), and the lower 3 images (b) are captured in the nighttime scenario (2 lux) with a higher camera gain (15
dB). The nighttime images have stronger noise due to higher camera gain.

Figure 9. The low-height gold-colored thresholds act as obstacles
that may pose a danger to the users.

Offspring Generation The offspring generation process
contains three steps: parent selection, crossover, and mu-
tation. We select the top solutions from the current gener-
ation as parents for offspring generation. The number of
parents is chosen as 50% or 60% of the size of the popu-
lation, 50% for an even number of solutions and 60% for
an odd number of solutions. For example, we use the top 3

solutions out of a total of 5 solutions per generation for the
stereo camera design problem and use the top 5 solutions
out of a total of 10 solutions per generation for the monoc-
ular design problem. We compare the optimization curves
from 3 different portions of populations used for offspring
generation (40%, 60%, 80%) in the depth estimation task.
The results are displayed in Fig. 5, which indicate that al-
though the final performance is not affected when using a
large number of training steps, using 60% of the population
to generate offspring yields the fastest and smoothest con-
vergence. Since using 40% of the population as parents em-
phasizes exploitation over exploration, the optimizer may
get stuck at local optima with fewer training steps. On the
other hand, using 80% of the population as parents creates
more diverse offspring, which emphasizes exploration over
exploitation and leads to slower convergence. Hence, we
choose an intermediate percentage for offspring generation
that is roughly half of the solution number per generation.

We then apply a uniform crossover scheme using the se-
lected parents to produce the offspring for the next gener-
ation of solutions, indicating that each parameter for the
offspring is randomly selected from the parents. For muta-
tion, we apply a multiplication factor from the same range,
which is a random number between 0.8 to 1.2, for all the
parameters in our experiments and apply an addition value
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Figure 10. Comparison of object detection performance using cameras designed by our method and the off-the-shelf cameras. The cameras
designed by our method show improved performance with small objects, objects at long distances, and objects that are partly occluded by
optimizing the FOV and pixel size to obtain a more suitable effective resolution and signal-to-noise ratio for the task.

whose range is customised for different parameters depend-
ing on their available design space. All these hyperparam-
eters used to implement the genetic algorithm are selected
empirically.

4.2. Parameter Initialization

In our experiments, all the camera parameters that are
optimized by the genetic algorithm are initialized with ran-
dom values within their design space. However, we com-
pare the optimization results using the proposed method
with different initialization by setting the camera parame-
ters in the depth estimation task to be initialized at their
smallest values (baseline: 0.01 m, FOV: 50°) and their
largest values in the design space (baseline: 3 m, FOV:
120°).

The results are displayed in Tab. 1. The experiment uses

the same hyperparameters for the genetic algorithm as de-
scribed in Sec. 4.1 to optimize the camera parameters. The
perception network is jointly trained during optimization,
indicated by• in the table. The results indicate that the ini-
tialization of camera parameters does not have a significant
impact on the final camera parameters and the downstream
task performance.

In addition, we illustrate the training curves of the above-
mentioned 3 camera parameter initialization schemes in
Fig. 6, which shows that random generation results in faster
convergence compared to initialising from extreme values.
This is because the optimal solution is usually not the ex-
treme values, and starting from random values between the
extremes gives values that are relatively closer to the opti-
mal solution. It is observed that starting from the smallest
parameter values results in the slowest convergence. This
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Figure 11. Comparison of feature extraction and matching with images captured by cameras designed by the proposed method and the
off-the-shelf cameras. We display the features that are successfully matched with the features in the next frame and filtered (inliers) on the
images, which shows that the cameras designed by our method contain the highest number of inliers.

is because the offspring at every iteration is generated from
the top solutions of the previous generation with a muta-
tion process, where the parent solutions are multiplied by a
random factor as the first mutation step. Therefore, smaller
parameters change on a smaller scale compared to larger
values, which slows down the exploration process and leads
to slower convergence.

5. Additional Results on Stereo Camera Design
We provide additional qualitative results for our stereo

camera design experiment in Fig. 7. The figure displays the
captured left images, the estimated depths, and the log er-
ror between the estimated maps and the ground-truth maps.
We compare the images and results by using the stereo

cameras designed by the proposed method with and with-
out joint optimization, the Reinforcement Learning (RL)
method (DISeR) [4], and two off-the-shelf cameras, which
are Intel RealSense D450 and ZED 2i. The configurations
of these cameras are listed in Tab. 1 of the main paper. The
metrics displayed in this figure are the same as Tab. 1 of the
main paper, which is log error and RMSE error in meters.

The results show that in our application scenario of the
outdoor environment, the off-the-shelf cameras get low per-
formance since their baselines are relatively low (0.095 m
and 0.12 m), but many objects, such as the buildings and
the footbridge, are far from the stereo camera. However,
it is observed that these off-the-shelf cameras perform well
in short distances, indicating that they can be beneficial for



an application that does not involve long-distance objects.
On the contrary, the cameras designed by our method and
DISeR perform well across both long and short distances.

6. Additional Details on Monocular Camera
Design

6.1. Environment

We construct the indoor virtual environment in UE 5
with a procedural generation technique, which generates
random floorplans and object locations. The size of the en-
vironment is configured to be 15 m in width and length and
3 m in height for our experiment, and adjusting to different
dimensions is trivial. However, each room in the environ-
ment needs to have a minimum length of 5 m to fit the fur-
niture. The environment contains objects from 10 classes,
which are sourced from the UE marketplace, encompassing
10 classes: sofa, bed, table, chair, bathtub, bathroom basins,
computer/TV, plant, lamp, and toy.

We illustrate some example renders from our virtual en-
vironment in Fig. 8, including a comparison of the day and
night design scenarios used to validate our method.

6.2. Image Sensor Catalog

The image sensor catalog we collected contains 43 im-
age sensors, 28 of which are from Sony, 10 from Onsemi, 3
from Luxima, and 2 from CMOSIS. The pixel sizes of these
sensors vary from 1.12 µm to 9 µm. The smallest sensor has
a dimension of 3.07 mm×2.3 mm, while the largest has a
dimension of 16.13 mm×12.04 mm.

6.3. Obstacle Placement

To restrict the camera’s Field-of-View (FOV), we place
low-height gold-colored thresholds at the entrance of all
the rooms in our virtual environment. An example of the
threshold is shown in Fig. 9. The thresholds act as obsta-
cles that may put the users at risk. They are configured to
be interactive actors in UE, making the auto-agent aware of
them even though they are not captured within the FOV of
the scene capture camera.

6.4. Qualitative Results

We visualise the performance of object detection, as well
as the feature extraction and matching task, with images
captured by the cameras designed by the proposed method
and the off-the-shelf machine/robotic cameras in Fig. 10
and Fig. 11 respectively. The off-the-shelf cameras are the
same cameras used to validate our simulator in Sec. 3.2,
which are the OAK-D Pro Wide camera, FLIR Flea3 cam-
era, and Basler Dart camera.
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