
MFTrans: A Multi-Resolution Fusion Transformer for Robust Tumor
Segmentation in Whole Slide Images - Supplementary

S1. Computational complexity of GT-MSA.
The overall computational complexity for the GT-MSA

and G-MSA (from GLAM-transformer [35]) operations for
given input global tokens G ∈ RNg×Nw×C are given by:

Ω(GT-MSA) = Ng ×Nw × C × (4C + 2Nw),

Ω(G-MSA) = Ng ×Nw × C × (4C + 2Nw ×Ng),

where Ng is the number of global tokens per window, Nw

is the number of windows, and C is the patch embedding
dimension.

Specifically, the computational complexity of GT-MSA
consists of two main parts: 1) the computation of the
query, key, and value (Ωqkv), and 2) the computation of
self-attention (Ω(q × k),Ω(k × v), and Ω(linear)). First,
we compute the query, key, and value for each global to-
kens (Ng) and windows (Nw) through linear transforma-
tions with dimension of C. The computational complexity
for this operation is:

Ω(qkv) = 3×Ng ×Nw × C2,

Second, for the self-attention, given query(Q ∈ RNw×C),
key(K ∈ RNw×C), and value(V ∈ RNw×C), we compute
the dot product between the query and key, followed by
multiplying the result with the value for all global tokens
independently. The output global tokens are then calculated
using a linear transformation. The computational complex-
ity for these operations are:

Ω(q × k) = Ng ×N2
w × C,

Ω(k × v) = Ng ×N2
w × C,

Ω(linear) = Ng ×Nw × C2

Threrfore, the computational complexity of GT-MSA is
lower than that of G-MSA, as GT-MSA computes self-
attention independently for each global token.Our method
computes the global tokens at the same positions within
each window independently, while G-MSA considers all
global tokens across the entire window simultaneously. De-
spite its lower complexity, GT-MSA outperforms G-MSA
in segmentation performance.

S2. Detailed classifier block

In our model, we add an auxiliary network, denoted as
the classifier block, to enhance discrimination in the lower
stages of our model. Specifically, the global feature from
the last stage, G4 ∈ RNg×8C , is passed through a linear
layer to reduce its dimensionality. Following this, we em-
ploy an attention-based MLP to classify whether each win-
dow originates from the tumor or normal tissue, as shown
in fig. S1. The attention weights are computed by a lin-
ear layer followed by a softmax operation, which assigns
higher importance to relevant tokens. For classification, we
use binary cross-entropy loss, where a label of 1 indicates
the tumor patch, and 0 indicates the normal patch.

To assess the effect of classification loss in the total loss,
Eq. (5), we compare the segmentation performance by vary-
ing ω using the Camelyon16 dataset. As shown in table S1,
ω = 0.2 shows the best segmentation performance, with a
Dice score of 0.818, Jaccard index of 0.692, and accuracy
of 0.938. Notably, the performance significantly dropped,
Dice score of 0.759, Jaccard index of 0.612, and accuracy
of 0.911, when the classification loss is not used (i.e., ω =
0). This result demonstrate the importance of the classifier

Figure S1. Architecture of the classifier block. An attention-
based MLP is used for tumor versus normal tissue classification.

ω = 0 ω =0.2 ω =0.4

Dice 0.759 0.818 0.806
Jaccard 0.612 0.692 0.675

Accuracy 0.911 0.938 0.935

Table S1. Effect of classification loss. Segmentation performance
is compared by varying ω in the total loss on the Camelyon16
dataset. Performance is reported in terms of Dice score, Jaccard
index, and accuracy, with top results in bold.

S1



block in helping the model capture global context more ef-
fectively.

S3. Detailed Image Decoder

To effectively upsample image features, we modify the
architecture of the image decoder across different stages.
The detailed architecture is provided in table S2. In the first
stage, The height and width are each increased by 4 times
with the same channel dimension. This is accomplished us-
ing four kernels of varying sizes: 4 × 4, 8 × 8, 16 × 16, and
32 × 32, with different the channel dimensions: C/2, C/4,
C/8, and C/8, respectively. The outputs are concatenated to
maintain the same channel with input. In the subsequent
stages, the height and width are doubled while the chan-
nel dimension is halved. Two kernels, 2 × 2 and 4 × 4,
are employed, and each output feature maps with a reduced
channel dimension of C/4. The output feature maps are con-
catenated and passed forward as input to the “Fusion stage”
in the next stage, as shown in fig. 3-(b), and (c).

To evaluate the effectiveness of the image decoder, we
compare it with bilinear upsampling on the Camelyon16
dataset. As shown in table S3, we observe that the im-
age decoder outperformed bilinear upsampling, achieving
a Dice score of 0.818, a Jaccard index of 0.692, and an ac-
curacy of 0.938. This result demonstrate that the image de-
coder provides superior performance compared to bilinear
upsampling method.

Stage Kernel Stride dim

1

4 × 4 4 × 4 C / 2
8 × 8 4 × 4 C / 4

16 × 16 4 × 4 C / 8
32 × 32 4 × 4 C / 8

2, 3, 4
2 × 2 2 × 2 C / 4
4 × 4 2 × 2 C / 4

Table S2. Detailed architecture of the image decoder across
different stages.

Image Decoder Upsample

Dice 0.818 0.813
Jaccard 0.692 0.685

Accuracy 0.938 0.939

Table S3. Effect of image decoder. Segmentation performance is
compared between the image decoder versus bilinear upsampling
on the Camelyon16 dataset. Performance is reported in terms of
Dice score, Jaccard index, and accuracy, with top results in bold.

S4. Effect of global token number on PAIP.

We conduct a comparative study to assess the effect of
the number of global tokens on our method for datasets
from different organs (i.e., PAIP2019). Table 5 and table S5
present the segmentation performance comparison results
for the Camelyon16 and PAIP2019 datasets, respectively
[3,21]. Similar to the results on the Camelyon16 dataset,
MFTrans with nine tokens demonstrates the best perfor-
mance on the PAIP2019 dataset, with performance drop-
ping when fewer or more than 9 tokens are used. Despite the
datasets being from different organs, the similar outcomes
suggest that our model is robust and generalizable across
various organ types.

7 8 9 10 11 12

Dice 0.773 0.790 0.801 0.788 0.781 0.774
Jaccard 0.648 0.671 0.688 0.669 0.657 0.647

Table S4. Effect of number of Global token on PAIP2019
dataset. We compare segmentation performance with varying
numbers of Global tokens on the Camelyon 16 dataset. The tumor
segmentation performance is compared in terms of Dice score,
Jaccard index, and accuracy, with top results in bold.

7 8 9 10 11 12

Dice 0.899 0.880 0.859 0.895 0.902 0.892
Jaccard 0.825 0.825 0.778 0.821 0.829 0.814

Table S5. Comparison with segmentation performance with varing
number of Global token.

S5. Experimental setting

S5.1. Data preparation

We evaluate our proposed model on three different
datasets: Camelyon16, Catholic Uijeongbu St. Mary’s hos-
pital, and PAIP2019. For the Camelyon16 dataset, a total of
400 H&E-stained WSIs are used, with 270 WSIs for train-
ing and 130 WSIs for testing. In the Catholic Uijeongbu
St. Mary’s hospital dataset, we collect a total of 83 WSIs
of lymph nodes from 36 patients, with 43 WSIs used for
training, 29 WSIs for validation, and 10 WSIs for testing.
For the PAIP2019 dataset, 60 H&E-stained WSIs from liver
biopsies are used, with 36 WSIs for training, 12 WSIs for
validation, and 12 WSIs for testing. During training, we
randomly select to balance the proportion of tumor and nor-
mal patches to avoid the class imbalance problem. All WSIs
undergo pre-processing, as described in section S5.2, before
further analysis.

S2



S5.2. Data pre-processing

We conduct several pre-processing steps to avoid batch
effect. Briefly, we first segment the tissue area from back-
ground area with Otsu algorithm. Then, we divide WSI into
non-overlapping patch of 224 × 224 pixel, which is used for
input of training and testing phase. The patches containing
less than 10% of the tumor area are excluded.

S5.3. Evaluate strategy

To evaluate performance, we employ several commonly
used metrics for segmentation tasks, including Dice score,
Jaccard Index, and Accuracy. These metrics are calculated
based on the counts of True Positives (TP), True Negatives
(TN), False Positives (FP), and False Negatives (FN). The
metrics are defined as follows:

Dice =
2× TP

2× TP + FP + FN
(1)

Jaccard Index =
TP

TP + FP + FN
(2)

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

In our implementation, we compute the metrics at the
WSI level by merging non-overlapping segmented patches
from the model into a complete WSI. However, for the
Camelyon16 dataset, the metrics are calculated using
patches because the tumor regions in the patches are too
small compared to the normal areas, making it difficult to
compute a reliable metric.

S3


	. Computational complexity of GT-MSA.
	. Detailed classifier block
	. Detailed Image Decoder 
	. Effect of global token number on PAIP.
	. Experimental setting
	. Data preparation 
	. Data pre-processing
	. Evaluate strategy


