
PostoMETRO: Pose Token Enhanced Mesh Transformer for Robust 3D Human
Mesh Recovery

Supplementary Material

In Appendix A, we first illustrate the detailed architec-
ture of our MLP-Mixer-based layers, which are used in our
pose feature modulator. Then we provide more details about
our datasets and experimental settings in Appendix B. More
visualization results and occlusion sensitivity analysis re-
sults are provided in Appendix C and Appendix D. We also
conduct more experiments in Appendix E. Finally, we dis-
cuss about societal impact, our limitations and future re-
search directions in Appendix F.

A. Architecture

(a)Architecture of MLP-Mixer-based Layer (b)Architecture of MLPBlock
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Figure S5. Detailed architecture of MLP-Mixer-based layer (a)
and MLPBlock (b).

The detailed architecture of our MLP-mixer-based layer
is illustrated in Fig. S5. The MLPBlock is a key part, made
up of Linear, GELU, and Dropout layers stacked together.
Each MLP-Mixer-based layer contains two sets of Layer-
Norm and MLPBlock. Residual connection is used to ease
the training.

B. Datasets
3D/2D Dataset Scale We utilized a large mixed dataset of
around 512k samples. Those samples, including 312k from
Human3.6M [5], 7k from UP-3D [7], 102k from MuCo-
3DHP [14]. and 75k(28k + 47k) from COCO [12], along
with 16k from MPII [1]. We adopt pseudo-ground-truth
SMPL [13] annotated datasets for part of our COCO(28k)
and MPII datasets from open source GitHub repository3,
and the other part of COCO(47k) from EFT4 after remov-

3https://github.com/huawei-noah/noah-research/
tree/master/CLIFF

4https://github.com/facebookresearch/eft

ing items duplicated with the former 28k.

Pretraining Dataset Scale As said in our main paper, we
adopt the publicly available5 pose tokenizer as described
in [3]. To train this tokenizer, a large open-source codebase
MMPose6 is used and COCO 2017 dataset(150k instances)
and MPII dataset(40K instances) are adopted.

In our main paper, we report the performance of MPT [9]
and our proposed method on 3DPW-TEST dataset. Our pro-
posed PostoMETRO outperforms MPT on MPVPE and PA-
MPJPE metrics but underperforms on MPJPE. We notice
that the scale of the pretraining dataset of MPT is much
larger than ours, and that should be brought to concern.
The numbers of samples of pretraining datasets are listed in
Tab. S8. As can be seen, MPT leverages much more train-
ing samples, i.e., 80000k mesh-pose pairs, during pretrain-
ing. Due to such a significant gap, we believe that MPT’s
better performance on the MPJPE metric is partly attributed
to the large-scale dataset it utilizes.

Data Preprocessing We directly adopt training data from
open source GitHub repository7 and replace COCO and
MPII data as described above. Besides, we download
3DPW-VAL [16] and 3DOH [18] from official websites89

and then parse data. Note that for 3D joint annotations of
3DPW-VAL and 3DOH, we use 3D joints regressed from
SMPL [13].

Fine-tune Strategy We first train PostoMETRO on
mixed datasets and then fine-tune it on corresponding
datasets following existing works. When testing on 3DPW-
TEST, we fine-tune our model on 3DPW-TRAIN by setting
the learning rate to 2 × 10−5 and training it for 30 epochs.
When testing on 3DOH, we fine-tune our model on 3DOH
training split by setting the learning rate to 1 × 10−4 and
training it for 30 epochs.

When testing on 3DPW-OCC, we directly use Pos-
toMETRO trained from mixed datasets. This differs from
the policy in PARE [6], where COCO, Human3.6M, and
3DOH are used. When testing on 3DOH, we further fine-
tune our model on 3DOH train set, note that we only train

5https://github.com/Gengzigang/PCT
6https://github.com/open-mmlab/mmpose
7https://github.com/microsoft/MeshTransformer
8https://virtualhumans.mpi-inf.mpg.de/3DPW/
9https://www.yangangwang.com/papers/ZHANG-OOH-

2020-03.html
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Methods Backbone Pre Dataset Scale 3DPW-TEST

MPVPE(↓) MPJPE(↓) PA-MPJPE(↓)

MPT HigherHRNet 8000K 79.4 65.9 42.8
Ours HRNet-W48 190K 76.8 67.7 39.8

Table S8. Comparison between MPT and ours in terms of performance in the 3DPW-TEST dataset and Pretraining dataset scale. Results
in bold indicate the best performance. Pre is short for Pretraining.

PostoMETRO on 3DOH train set when testing on 3DOH
test set.

C. Qualitative Results
Here, we offer more qualitative results in Fig. S7. Note

that we highlight the crucial regions with red rectangular
boxes. Especially, to validate that PostoMETRO does not
collapse when the 2D pose is noisy, we feed noisy pose to-
kens to our model and test whether it can output plausible
results. First, we train our model with pose token without
noise and freeze it. Then we add random Gaussian noise to
the logits L̂ ∈ RN×V (output by the classifier in pose tok-
enizer) and get noisy logits L̂noisy ∈ RN×V . We then use
L̂noisy to obtain noisy pose tokens as input for the frozen
model and visualize its output. The output and the corre-
sponding noisy 2D poses are shown in Fig. S8, we use red
rectangular boxes to denote noisy regions. As can be seen,
PostoMETRO can output decent results even when 2D pose
is unreliable. These results demonstrate the robustness of
PostoMETRO and indicate the complementary role of im-
age tokens to pose tokens, further distinguishing our model
from those that rely solely on token-wise pose representa-
tion [9].

D. Occlusion Analysis
Following prior works [6, 8, 17], we visualize joint er-

ror maps by replacing the classification score with errors
between predicted joints and corresponding ground truth.
Same as [6, 8], we use MPJPE as our measurement since
PA-MPJPE leads to an artificially low error by aligning
global orientations. We conduct our experiment on the
SOTA non-parametric method, FastMETRO [2], and our
proposed PostoMETRO. We provide extensive results in
Fig. S9 and Fig. S10, where a warmer color denotes a
higher error. It can be seen that PostoMETRO can produce
results with lower errors in various scenarios, showing that
PostoMETRO is more robust to occlusions, demonstrating
its superiority.

E. Extra ablations
Training/Inference Time. We compare PostoMETRO
with METRO [10], MeshGraphormer [11] and Fast-

Methods 3DPW-Non-OC

MPVPE(↓) MPJPE(↓) PA-MPJPE(↓)

FastMETRO [2] 99.9 91.1 51.0
Ours 90.1 82.3 46.8

Table S9. Performance on 3DPW-Non-OC. Results in bold indi-
cate the best performance. ResNet-50 is used as backbone. Note
that results are obtained without fine-tuning on 3DPW-TRAIN
split.

Backbone Use GT 3DPW-TEST

MPVPE(↓) MPJPE(↓) PA-MPJPE(↓)

ResNet-50 ✗ 78.0 68.4 40.8
ResNet-50 ✓ 65.9 57.7 31.3

Table S10. Performance on 3DPW-TEST [16] when using or not
using ground truth 2D pose tokens. Results in bold indicate the
best performance.

METRO [2]. We set the training parameters (e.g., epochs)
as described in the original works [2, 10, 11]. The training
(including pretraining) and inference times are shown in Ta-
ble S11. PostoMETRO shows competitive efficiency while
improving performance.
Results in Non-occlusion Scenarios. We also test our
model’s performance under non-occlusion scenarios. We
construct a non-occlusion subset from 3DPW by remov-
ing samples used in 3DPW-OCC and 3DPW-PC. The com-
parison between FastMETRO and PostoMETRO is listed
in Tab. S9. Our method performs significantly better, hence
proving its effectiveness even in non-occlusion scenarios.
Accuracy of Pose Tokens. For the purpose of exploring
the upper limits of the token-wise 2D pose’s assistance in
the 3DHPSE task, we feed the tokens generated from the
ground truth 2D pose by the pose encoder into the trans-
former. When using a classifier to predict pose tokens,
pose confidence is generated, but it does not exist when us-
ing ground truth pose since pose encoder does not output
confidence. Therefore, we use a very high score (fixed at
10 in the experiments) and concatenate it with the ground
truth pose tokens for fine-tuning. The experimental re-
sults in Tab. S10 demonstrate a significant improvement



Method Training time Inference time 3DPW-TEST

MPVPE(↓) MPJPE(↓) PA-MPJPE(↓)

METRO [10] ∼1400 GPU hrs 15.8FPS 88.2 77.1 47.9
MeshGraphormer [11] ∼1300 GPU hrs 15.0FPS 87.7 74.7 45.6

FastMETRO [2] ∼330GPU hrs 17.0FPS 84.1 72.5 44.6
Ours (ResNet-50) ∼340 GPU hrs 18.7FPS 78.0 68.4 40.8

Ours (HRNet-W48) ∼390 GPU hrs 11.5FPS 76.8 67.7 39.8

Table S11. Training and Inference time compared with other baselines. Our proposed method shows competitive efficiency while improving
performance.

Num. Blocks 3DPW-TEST

PA-MPJPE(↓)

1 50.1
2 49.6
4 48.9
8 49.6

Table S12. Ablation of mixer block number in pose feature modu-
lator. Results are obtained without fine-tuning on 3DPW-TRAIN
split.

in performance when utilizing ground truth pose tokens.
When setting ResNet-50 as backbone, by using ground-
truth 2D pose tokens, our method scores 65.9mm, 57.7mm
and 31.3mm on MPVPE, MPJPE, PA-MPJPE respectively,
highlighting the substantial benefit of accurate 2D pose in
the process of 3D human mesh recovery, further implying
the strong potential of our proposed methods.
Ablation of Numbers of Mixer Layers. We ablate how
deep our MLP-Mixer should be. Results in Tab. S12
show that increasing the number of mixer blocks decreases
the error, with the optimal performance achieved at 4
blocks. However, further increments deteriorate model per-
formance, possibly due to optimization challenges. There-
fore, we use 4 blocks of MLP-Mixer as our pose feature
modulator in our work.

F. Discussion
Societal Impact. Our proposed method can be used to de-
tect 3D human body poses, thus applicable in certain sce-
narios, such as monitoring worker activities in industrial
manufacturing environments or positioning patient poses in
medical settings. However, in these low fault-tolerant en-
vironments, additional model assistance may be necessary
when using the model.
Limitations & Future research. Given that PostoMETRO
is a data-driven approach, it may fail when there is a signif-
icant difference between the test samples and those in our
datasets. Here we show some failure cases in Fig. S6. As
can be seen, when the persons in the image exhibit extreme

poses, e.g., skateboarding, PostoMETRO might not perform
well and yield unsatisfactory results(e.g., body part mis-
alignment bounded by red boxes), due to the lack of abun-
dant training samples of such poses in our training sets. A
straightforward solution is to use datasets with more diverse
human poses. Setting that aside, exploring how to faithfully
reconstruct the human mesh with extreme poses within the
constraints of existing data is an interesting future work.
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(a) Input Image (c) Ours(b) 2D Pose

Figure S6. Qualitative results of PostoMETRO in some challenging cases. From left to right: (a) Input image, (b) 2D pose, (c) Our
results.



(a) Input Image (c) FastMETRO (d) Ours(b) 2D Pose (a) Input Image (c) FastMETRO (d) Ours(b) 2D Pose

Figure S7. Qualitative results on 3DPW (rows 1-3) and OCHuman (rows 4-6) datasets. From left to right: (a) Input image, (b) 2D
Pose decoded from pose tokens, (c) FastMETRO [2] results, (d) Our results.

(a) Input Image (c) Ours(b) Noisy 2D Pose (a) Input Image (c) Ours(b) Noisy 2D Pose

Figure S8. Performance of PostoMETRO with noisy pose token. From left to right: (a) Input image, (b) Noisy 2D pose, (c) Our results.
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Figure S9. Occlusion Sensitivity Maps of FastMETRO [2] and PostoMETRO.
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Figure S10. Additional results for Occlusion Sensitivity Maps of FastMETRO [2] and PostoMETRO.
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