
Appendix

A. Victim model training, evaluation, and attack setups

When training all CIFAR-10, CIFAR-100, and Tiny-ImageNet victim models (each of which is given by an attribute
combination), we use the SGD optimizer with the cosine annealing learning rate schedule and an initial learning rate of 0.1.
The weight decay is 5e� 4, and the batch size is 256. The number of training epochs is 75 for CIFAR-10 and CIFAR-100,
and 100 for Tiny-ImageNet. When the weight sparsity (WS) is promoted, we follow the one-shot magnitude pruning
method [87, 94] to obtain a sparse model. To obtain models with different activation functions (AF) and kernel sizes (KS), we
modify the convolutional block design in the ResNet and VGG model family accordingly from 3, ReLU to others, i.e., 5/7,
tanh/ELU. Table A1 shows the testing accuracy (%) of victim models on different datasets, given any studied (AF, KS, WS)
tuple included in Table 2. It is worth noting that we accelerate victim model training by using FFCV [95] when loading the
dataset.

Table A1. Victim model performance (testing accuracy, %) given different choices of datasets and model architectures.

Dataset AT

Attribute combination

ReLU tanh ELU
3 5 7 3 5 7 3 5 7

0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5% 0% 37.5% 62.5%

CIFAR-10

ResNet9 94.4 93.9 94.2 93.3 93.5 93.5 92.4 92.8 92.8 89.0 88.8 89.9 88.4 88.6 88.2 87.0 87.2 88.0 91.0 91.2 90.7 90.3 90.2 90.5 89.3 90.0 89.6
ResNet18 94.7 94.9 95.0 94.2 94.5 94.5 93.9 93.5 93.6 87.1 87.5 88.2 84.2 84.9 85.5 81.3 81.2 85.1 90.6 90.8 90.6 90.1 91.1 90.5 85.7 83.4 84.3
ResNet20 92.1 92.5 92.3 92.0 92.2 92.0 90.9 91.8 91.5 89.7 89.7 89.7 89.5 89.4 89.6 88.3 88.2 88.9 90.7 91.2 90.9 90.3 90.5 90.6 89.2 89.7 89.7
VGG11 91.0 91.1 90.4 89.8 89.9 89.4 88.2 88.4 88.0 88.7 89.1 88.9 87.2 87.6 87.6 87.0 86.8 87.0 89.4 89.5 89.5 88.0 88.2 88.5 87.1 87.1 87.2
VGG13 93.1 93.3 93.0 92.0 92.2 92.6 91.2 91.1 91.0 90.1 90.1 90.1 89.3 89.1 89.3 88.2 88.8 88.8 90.8 90.9 90.8 89.2 89.5 89.4 88.4 88.7 88.9

CIFAR-100

ResNet9 73.3 73.6 73.5 71.8 71.9 71.2 69.1 69.8 69.2 58.6 60.1 60.3 60.1 61.2 62.0 58.2 59.8 60.3 70.8 70.7 70.8 69.5 69.6 69.8 67.3 68.3 68.7
ResNet18 74.4 75.0 75.6 73.6 73.0 74.6 71.2 71.0 70.9 62.0 62.0 62.9 57.3 59.3 60.1 51.3 53.4 57.1 70.1 70.8 71.1 66.8 69.7 69.7 63.1 61.8 65.7
ResNet20 68.3 68.4 67.5 67.8 67.5 67.7 66.8 66.7 67.6 59.9 61.3 59.6 61.9 62.0 62.1 59.9 61.2 61.2 66.4 67.6 67.7 67.0 67.3 67.2 66.2 66.9 66.8
VGG11 68.3 68.4 67.7 65.2 65.7 65.8 62.4 62.0 62.6 65.2 65.5 65.5 63.6 63.6 63.9 62.1 61.8 62.5 66.2 66.5 65.9 64.6 64.0 64.6 61.5 62.3 61.9
VGG13 71.0 70.6 71.1 69.9 70.5 70.3 66.5 66.5 67.2 66.7 67.5 67.5 65.2 65.5 67.1 63.9 63.4 65.0 68.9 69.3 69.5 66.3 66.7 67.1 64.2 64.5 64.7

Tiny-ImageNet ResNet18 63.7 64.1 63.5 61.5 62.7 62.6 59.6 61.0 61.7 47.0 48.1 50.0 46.6 47.9 48.3 41.0 43.5 44.6 57.2 57.9 58.1 52.7 53.8 53.6 52.3 51.5 52.3

For different attack types, we list all the attack configurations below:
F FGSM. We set the attack strength ✏ equal to 4/255, 8/255, 12/255, and 16/255, respectively.
F PGD `1. We set the attack step number equal to 10, and the attack strength-learning rate combinations as (✏ = 4/255,
↵ = 0.5/255), (✏ = 8/255, ↵ = 1/255), (✏ = 12/255, ↵ = 2/255), and (✏ = 16/255, ↵ = 2/255).
F PGD `2. We set the step number equal to 10, and the attack strength-learning rate combinations as (✏ = 0.25, ↵ = 0.05),
(✏ = 0.5, ↵ = 0.1), (✏ = 0.75, ↵ = 0.15), and (✏ = 1.0, ↵ = 0.2).
F CW. We use `2 version CW attack with the attack conference parameter equal to 0. We also set the learning rate equal to
0.01 and the maximum iteration number equal to 50 to search for successful attacks.
F AutoAttack `1. We use the standard version of AutoAttack with the `1 norm and ✏ equal to 4/255, 8/255, 12/255,
and 16/255, respectively.
F AutoAttack `2. We use the standard version of AutoAttack with the `2 norm and ✏ equal to 0.25, 0.5, 0.75, and 1.0,
respectively.
F SquareAttack `1. We set the maximum query number equal to 5000 with `1 norm ✏ equal to 4/255, 8/255, 12/255,
and 16/255, respectively.
F SquareAttack `2. We set the maximum query number equal to 5000 with `1 norm ✏ equal to 0.25, 0.5, 0.75, and 1.0,
respectively.
F NES. We set the query number for each gradient estimate equal to 10, together with µ = 0.01 (i.e., the value of the
smoothing parameter to obtain the finite difference of function evaluations). We also set the learning rate by 0.0005, and the
maximum iteration number by 500 for each adversarial example generation.
F ZO-signSGD. We set the query number for each gradient estimate equal to 10 with µ = 0.01. We also set the learning
rate equal to 0.0005, and the maximum iteration number equal to 500 for each adversarial example generation. The only
difference between ZO-signSGD and NES is the gradient estimation method in ZOO. ZO-signSGD uses the sign of forward
difference-based estimator while NES uses the central difference-based estimator.

These 10 attack methods (Tab. 1) are applied to each VM on the test set to generate their respective adversarial sets.
Therefore, 10⇥ 10, 000⇥ 135 adversarial examples are generated for CIFAR-10 and CIFAR-100 each; 10⇥ 10, 000⇥ 27 for
Tiny-ImageNet. Then, the generated adversarial examples are split 80/20 for MPN training/testing. This ensures a balanced
representation of each attribute across different VMs, while the diversity of adversarial attacks enables comprehensive training
and evaluation of MPN.

B. OOD generalization performance of MPN across attack types when PEN is used

Similar to Fig. 7, Fig. A1 shows the generalization performance of MPN when trained on a row-specific attack type but
evaluated on a column-specific attack type when �PEN is given as input. When MPN is trained on the collection of four attack
types PGD `1, PGD `2, CW, and ZO-signSGD (i.e., the ‘Combined’ row), such a data augmentation can boost the OOD
generalization except for the random search-based Square attack.

Figure A1. Generalization performance matrix of MPN when trained on a row-specific attack type but evaluated on a column-specific attack
type given �PEN as input. The attack data are given by adversarial perturbations with strength ✏ = 8/255 for `1 attacks, ✏ = 0.5 for `2
attacks, and c = 1 for CW attack. The victim model architecture and the dataset are set as ResNet9 and CIFAR-10. The ‘combined’ row
represents MPN training on the collection of four attack types: PGD `1, PGD `2, CW, and ZO-signSGD.

C. MPN across different architecture types (AT)

We also peer into the generalization of MPN across different VM architectures (i.e., AT in Table 1), while maintaining
constant configurations for other attributes (KS, AF, and WS).

Fig. A2 demonstrates the generalization matrix of MPN when trained and evaluated using adversarial perturbations
generated from different VM architectures (i.e., different values of AT in Table 1) by fixing the configurations of other attributes
(KS, AF, and WS). We observe that given an attack type, the in-distribution MPN generalization remains well across VM
architectures. Yet, the OOD generalization of MPN (corresponding to the off-diagonal entries of the generalization matrix)
rapidly degrades if the test-time VM architecture is different from the train-time one. This inspires us to train MPN on more
AT variants in order to retain the model parsing performance, as shown in the last row of each subfigure of Fig. A2.

(a) FGSM (b) PGD `1 (c) CW
Figure A2. Generalization matrix (%) of MPN when trained on attack data generated from a row-specific architecture but evaluated on
attack data generated from a column-specific architecture. Both the train-time and test-time architectures share the same VM attributes in
KS, AF, and WS. The attack type is specified by FGSM, PGD `1, or CW on CIFAR-10, with the attack strength ✏ = 8/255 for `1 attacks
and c = 1 for CW.

MPN is then trained on (AT, AF, KS, WS) tuple by merging AT into the attribute classification task. We conduct experiments
considering different architectures mentioned in Table 2 on CIFAR-10 and CIFAR-100, with � and �PEN as MPN’s inputs,
respectively. We summarize the in-distribution generalization results in Table A2, Table A3, Table A4, and Table A5. Weighted
accuracy refers to the testing accuracy defined in Sec. 5, i.e.,

P
i(NiTA(i))/

P
i Ni, where Ni is the number of classes of

the model attribute i, and TA(i) is the testing accuracy of the classifier associated with the attribute i (Fig. 3). In the above
tables, we also show the testing accuracy for each attribute, i.e., TA(i). Combined accuracy refers to the testing accuracy
over all victim model attribute-combined classes, i.e., 135 classes for 5 AT classes, 3 AF classes, 3 KS classes, and 3 WS
classes. The insights into model parsing are summarized below: (1) MPN trained on � and �PEN can effectively classify all the
attributes AT, AF, KS, WS in terms of per-attribute classification accuracy, weighted testing accuracy, and combined accuracy.
(2) Compared to AT, AF, and KS, WS is harder to parse.

Table A2. MPN performance (%) on different attack types given different evaluation metrics with adversarial perturbation � as input on
CIFAR-10.

Metrics

Attack types

FGSM PGD `1 PGD `2 CW
✏ = 4/255 ✏ = 8/255 ✏ = 12/255 ✏ = 16/255 ✏ = 4/255 ✏ = 8/255 ✏ = 12/255 ✏ = 16/255 ✏ = 0.25 ✏ = 0.5 ✏ = 0.75 ✏ = 1.0 c = 0.1 c = 1 c = 10

AT accuracy 97.77 97.85 97.91 97.91 97.23 96.13 96.16 94.22 99.77 99.64 99.37 99.12 96.73 97.30 97.28
AF accuracy 95.67 95.73 95.79 95.71 95.86 95.26 95.77 94.05 99.51 99.36 99.04 98.68 95.12 94.84 94.68
KS accuracy 98.66 98.66 98.65 98.71 98.22 97.55 97.43 95.52 99.83 99.79 99.64 99.48 96.94 98.13 98.09
WS accuracy 87.16 87.16 87.29 87.52 84.36 79.99 80.01 71.68 98.51 97.83 96.86 95.57 88.42 85.28 85.03

Weighted accuracy 95.24 95.28 95.34 95.38 94.39 92.79 92.89 89.63 99.46 99.23 98.82 98.34 94.65 94.38 94.27

Combined accuracy 81.85 82.00 82.19 82.33 78.65 73.11 73.33 62.67 97.79 96.89 95.38 93.55 83.00 79.29 78.88

Table A3. MPN performance (%) on different attack types given different evaluation metrics with estimated perturbation �PEN as input on
CIFAR-10.

Metrics

Attack types

FGSM PGD `1 PGD `2 CW
✏ = 4/255 ✏ = 8/255 ✏ = 12/255 ✏ = 16/255 ✏ = 4/255 ✏ = 8/255 ✏ = 12/255 ✏ = 16/255 ✏ = 0.25 ✏ = 0.5 ✏ = 0.75 ✏ = 1.0 c = 0.1 c = 1 c = 10

AT accuracy 88.98 95.68 97.20 97.64 75.81 84.58 90.27 88.50 61.09 81.41 87.80 90.48 56.10 64.11 64.30
AF accuracy 83.48 92.21 94.56 95.22 74.95 85.04 90.72 89.81 57.62 76.90 83.95 87.36 54.61 58.77 58.98
KS accuracy 91.57 96.63 97.96 98.41 81.10 88.18 92.67 90.99 67.85 84.50 89.93 92.18 62.46 69.81 70.15
WS accuracy 69.99 81.42 84.92 86.59 56.07 63.92 70.19 64.80 50.09 67.26 74.02 77.70 46.40 47.53 47.77

Weighted accuracy 84.29 92.08 94.17 94.92 72.53 81.02 86.58 84.23 59.44 78.07 84.48 87.44 55.07 60.63 60.87

Combined accuracy 54.83 72.66 78.63 80.83 32.59 46.05 57.10 50.60 18.38 45.39 57.10 63.00 14.62 19.44 19.70

Table A4. MPN performance (%) on different attack types given different evaluation metrics with adversarial perturbation � as input on
CIFAR-100.

Metrics

Attack types

FGSM PGD `1 PGD `2 CW
✏ = 4/255 ✏ = 8/255 ✏ = 12/255 ✏ = 16/255 ✏ = 4/255 ✏ = 8/255 ✏ = 12/255 ✏ = 16/255 ✏ = 0.25 ✏ = 0.5 ✏ = 0.75 ✏ = 1.0 c = 0.1 c = 1 c = 10

AT accuracy 97.70 97.76 97.76 97.75 97.03 95.40 95.23 92.52 99.59 99.29 98.91 98.50 93.84 96.23 96.30
AF accuracy 95.17 95.14 94.96 95.11 94.79 93.73 93.87 91.87 99.14 98.63 97.97 97.31 90.83 92.32 92.47
KS accuracy 97.66 97.65 97.69 97.62 96.75 95.16 94.44 91.25 99.62 99.43 99.16 98.70 93.11 95.77 95.81
WS accuracy 81.13 80.77 80.90 80.94 76.57 69.85 68.16 59.42 96.58 95.04 92.70 90.43 76.61 74.64 74.77

Weighted accuracy 93.60 93.54 93.53 93.55 92.11 89.52 88.97 85.02 98.85 98.27 97.43 96.56 89.34 90.67 90.76

Combined accuracy 75.08 74.76 74.82 74.95 69.72 61.27 59.31 48.37 95.27 93.06 89.89 86.73 67.19 66.24 66.56

Table A5. MPN performance (%) on different attack types given different evaluation metrics with estimated perturbation �PEN as input on
CIFAR-100.

Metrics

Attack types

FGSM PGD `1 PGD `2 CW
✏ = 4/255 ✏ = 8/255 ✏ = 12/255 ✏ = 16/255 ✏ = 4/255 ✏ = 8/255 ✏ = 12/255 ✏ = 16/255 ✏ = 0.25 ✏ = 0.5 ✏ = 0.75 ✏ = 1.0 c = 0.1 c = 1 c = 10

AT accuracy 88.17 95.25 96.92 97.45 72.40 82.48 88.11 85.47 62.77 80.01 85.88 88.33 47.31 51.80 52.48
AF accuracy 81.81 91.14 93.53 94.52 71.43 81.93 87.76 86.71 58.16 74.06 80.88 84.18 49.98 49.49 49.96
KS accuracy 88.62 94.92 96.58 97.12 76.97 84.74 88.78 86.46 69.38 84.09 88.68 90.56 56.07 59.68 59.72
WS accuracy 64.19 74.98 78.60 79.85 50.64 56.88 60.32 54.94 46.50 61.73 67.79 70.59 39.46 39.85 40.37

Weighted accuracy 81.76 89.95 92.19 92.98 68.51 77.36 82.22 79.40 59.71 75.69 81.53 84.12 48.08 50.43 50.90

Combined accuracy 47.75 65.27 71.05 73.27 25.56 37.49 45.28 38.97 16.27 38.87 49.04 54.06 7.31 9.20 9.59

D. Correlation between transfer attack and model parsing

First, we show the full figure of Fig. 7 as Fig. A3 for better visualization.

(a) Attack successful rate (%) (b) Confusion matrix (%)
Figure A3. Model parsing of transfer attacks: Transfer attack success rate matrix (a) and model parsing confusion matrix (b). Given the
architecture type ResNet9, the dataset CIFAR-10, and the attack type PGD `1 (with strength ✏ = 8/255), each model attribute combination
(AF, KS, WS) defines a model instance to be attacked, transferred, or parsed.

Although model parsing for transfer attacks presents difficulties compared to non-transfer scenarios, our model parsing
method does not fail. Fig. 7(b) highlights the dominance of correct model parsing (diagonal entries) over misclassifications (off-
diagonal entries). Further, to understand why attack transferability plays a role in model parsing, we extract two representative
cases from Fig. 7: (1) ‘hard-to-parse’ (‘easy-to-transfer’): transfer attacks from (ReLU,3,0%) to (ReLU,3,37.5%); (2) ‘easy-
to-parse’ (‘hard-to-transfer’): transfer attacks from (ReLU,3,0%) to (tanh,3,0%). Hard-to-parse attacks show stronger input
gradient correlation (see Fig. A4) between the source victim model and the transfer attack target model, indicating higher
transferability. Given the model attribute information is carried within the input gradient, model parsing for transfer attacks is
harder.

Figure A4. Input gradient correlation between true victim model and transfer attack target model in ‘easy-to-parse’ and ‘hard-to-parse’
scenarios, expanded from Fig. 7.

E. Model parsing vs. model robustness

We re-use the collected ResNet9-type victim models in Fig. 7, and obtain their adversarially robust versions by conducting
adversarial training [1] on CIFAR-10. Fig. A5 presents the generalization matrix of MPN when trained on a row-wise
attack type but evaluated on a column-wise attack type. Yet, different from Fig. 6, the considered attack type is expanded
by incorporating ‘attack against robust model’, besides ‘attack against standard model’. It is worth noting that every attack
type corresponds to attack data generated from victim models (VMs) instantiated by the combinations of model attributes
KS, AF, and WS. Thus, the diagonal entries and the off-diagonal entries of the generalization matrix in Fig. A5 reflect the
in-distribution parsing accuracy within an attack type and the OOD generalization across attack types. Here are two key
observations. First, the in-distribution generalization of MPN from attacks against robust VMs is much poorer (see the marked
region ¨), compared to that from attacks against standard VMs. Second, the off-diagonal performance shows that MPN
trained on attacks against standard VMs is harder to parse model attributes from attacks against robust VMs, and vice versa
(see the marked region ≠). Based on the above results, we posit that model parsing is easier for attacks generated from VMs
with higher accuracy and lower robustness.

Figure A5. Generalization performance (%) matrix of MPN across attack types, ranging from FGSM, PGD `1, PGD `2, and CW attacks
against standard victim models to their variants against robust victim models, termed (Standard or Robust) Attack. Other setups are
consistent with Fig. 6.

Figure A6. Distribution of input gradient `2 norms on testing data of robustly and normally trained models on (CIFAR10, ResNet9),
expanded from Fig. A5.

To explain why the adversarial examples against robust models are hard to parse, we try to understand this from the
perspective of the norm of input gradients. Fig. A6 shows that robust models are harder to infer from the adversarial
examples due to the low magnitude power of input gradients, making it non-differentiable between different model attribute
configurations.

F. Other experimental studies

We also study other factors that could possibly affect the model parsing performance like PGD steps, step sizes, and stronger
transfer attack methods.

Table A6. Model parsing accuracy of PGD `1 perturbations with ✏ = 8/255 on (CIFAR10, ResNet9) under different attack steps k and step
sizes ↵.

Training

Testing
k = 10 20 40 80

k = 10 95.07 93.59 93.53 93.53
20 93.73 93.88 93.92 93.89
40 93.84 93.96 94.07 93.99
80 93.92 93.98 94.08 94.11

Training

Testing
↵ = 1/255 1.5/255 2/255 2.5/255

↵ = 1/255 95.07 91.31 89.33 88.95
1.5/255 93.41 95.85 95.54 95.18
2/255 91.51 95.88 96.09 96.02

2.5/255 90.26 95.61 96.09 96.17

For attacks like PGD, while hyperparameters (step count k and step size ↵) exist, their influence on model parsing is less
notable compared to the attack strength ✏ (Fig. 5). Table A6 shows additional justification of model parsing vs. k and ↵.

Table A7. Model parsing accuracy of MI/DMI-FGSM attacks vs. PGD `1-attack on (CIFAR10, ResNet9), expanded from Table 4.

Strength Attack Accuracy (%)
(✏) methods x0 �PEN �

8/255
PGD 66.62 83.20 95.07
MI 65.16 82.46 94.33

DMI 62.65 81.90 90.93

12/255
PGD 76.65 89.73 94.91
MI 72.83 87.02 93.86

DMI 71.99 85.05 90.67

Tab. A7 consistently shows that the improved transfer attacks like MI-FGSM [96] and DMI-FGSM [18] are a bit harder in
model parsing than the ordinary PGD attacks. However, the model parsing ability is still prominent, proving the feasibility of
our method.

G. Extended Study on Refined Model Parsing Labels

To generalize our model parsing method, we refine the label definition to decompose specific model architectures (ResNet18,
VGG11, etc..) into architecture families (ResNet, VGG, etc..) and exact layer numbers (ResNet9, ResNet18, VGG11, VGG13,
etc..). We treat architecture family and layer number as two subclassification tasks, categorizing layer numbers as small/large.

(a) Model Architecture family (b) Layer Number
Figure A7. Model parsing performance (%) over a refined label definition: model architecture family (a) and layer number (b). The dataset
is CIFAR-10, and the attack type is PGD `1 (with strength ✏ = 8/255).

Figure A7 demonstrates the strong generalization ability of the model parsing method. Each heatmap shows that the model
can successfully classify both model architecture families (ResNet vs. VGG) and layer numbers (small vs. large) with high
accuracy. Misclassification rates are very low (around 1% in both tasks), indicating that the model effectively differentiates
between the architectures and the layer size.

	. Introduction
	. Related Work
	. Preliminaries and Problem Setups
	. Methods
	. Experiments
	. Experiment setup and implementation
	. Results and insights

	. Conclusion
	. Victim model training, evaluation, and attack setups
	. OOD generalization performance of MPN across attack types when PEN is used
	. MPN across different architecture types (AT)
	. Correlation between transfer attack and model parsing
	. Model parsing vs. model robustness
	. Other experimental studies
	. Extended Study on Refined Model Parsing Labels

