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A. Experiment setup

Dataset We evaluate DepthSSC on the Se-
manticKITTI [1] dataset, renowned for its dense semantic
annotations of urban driving sequences from the KITTI
Odometry Benchmark. The dataset voxelizes point
clouds into a 51.2m×51.2m×64m scene, represented by
256×256×32 voxel grids, and includes 20 semantic classes,
including the ”empty” category. SemanticKITTI includes
RGB images (1220×370) and LiDAR sweeps as inputs.
The dataset is divided into 10 sequences for training, 1 for
validation, and 11 for testing. We also evaluate DepthSSC
on the SSCBench-KITTI360 [13],which consist of 20 and
19 classes. This dataset consist of voxel grids with semantic
labels covering an area of 51.2m × 51.2m × 6.4m, with
each voxel having a size of 0.2m, creating a grid resolution
of 256× 256× 32.

Metric For our experimentation with the DepthSSC
model, we exclusively utilize RGB images from a monoc-
ular vision setup. These images, being a primary source of
input for our model, facilitate the understanding of scene
structures and semantics. Our primary evaluation metrics
remain focused on the intersection over union (IoU) for the
occupied voxel grids. Additionally, we also adopt the mean
IoU (mIoU) metric for voxel-wise semantic evaluations.

Baselines We compare our proposed DepthSSC with ex-
isting SSC baselines (JS3CNet [19], AICNet [12] and
LMSCNet [22]). We also compare DepthSSC with
MonoScene [3], TPVFormer [12], VoxFormer [14], NDC-
Scene [23], Symphonies [9] and HASSC [21], which are
best RGB-only SSC methods. Note that for the methods
with more than RGB inputs, we follow [3] to adapt their
results to RGB only inputs.

*Corresponding author.

Moreover, in Table 1 and Table 2 of the main paper, the
notations Occ, Depth and Pts denote the occupancy grid,
depth map and point cloud, which are the 3D input required
by the SSC baselines. For a fair comparison, all the three
inputs are converted from the depth map predicted by a
pretrained depth predictor [2].For implementation details of
DepthSSC, please refer to the supplementary materials.

B. Implementation details

B.1. Architectures

We adopt ResNet-50 [5] as the backbone for 2D fea-
ture extraction. The backbone consists of four stages, and
we utilize features from the third stage (out indices=(2,))
for further processing. The network is partially frozen
(frozen stages=1) and employs batch normalization (BN)
for stable training. We employ a Feature Pyramid Network
(FPN) [16] to process the extracted 2D features. The FPN
takes the 1024-dimensional features from the ResNet back-
bone and transforms them into a 128-dimensional feature
space. The FPN starts from level 0, adds extra convolutions
on output, and produces feature maps with a spatial resolu-
tion of H/4×W/4× 128.

In the proposed method, voxel queries are 3D grid-
shaped learnable parameters that map 2D features to the 3D
volume. The voxel queries Q ∈ R64×64×16×128 are gen-
erated at a lower resolution to reduce computational load.
From these voxel queries, a subset Qp = Reshape(Q[Mout])
is selected based on predicted occupancy from depth in-
formation, resulting in Qp ∈ R1024×128, where Mout is
the corrected occupancy map. To handle multi-modal data,
we incorporate a cross-transformer and a self-transformer.
The cross-transformer utilizes a PerceptionTransformer ar-
chitecture with three encoder layers, each based on Vox-
FormerEncoder, which processes input using deformable
cross-attention mechanisms [10] to integrate multi-view im-
age features into a unified 3D space. This encoder attends
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to 8 points per pillar and employs Multi-Scale Deformable
Attention [26] for effective feature fusion. Each layer in
the cross-transformer has an embedding dimension of 128
and a feedforward dimension of 256, with a dropout rate
of 0.1. The self-transformer follows a similar Perception-
Transformer3D architecture with two encoder layers, using
deformable self-attention to refine voxel features within the
3D space. The self-transformer has an embedding dimen-
sion of 128 and attends to 8 points within each voxel.

Our Spatially-Transformed Graph Fusion (ST-GF) mod-
ule addresses the misalignment issue between depth maps
and voxel queries. The Adaptive Spatial Adjustment Net-
work (ASAN) predicts a 3D affine transformation matrix Θ
for each voxel query Q ∈ R64×64×16×128 and depth pre-
diction D ∈ R64×64×16×1. Using Θ, the grid generator
maps the output space to the input space, applying trilinear
interpolation to adjust voxel positions. Transformed vox-
els are clustered into nodes, with edges representing spa-
tial relationships. Node features are fused via graph con-
volution, and the refined features are backpropagated to the
original voxel space, ensuring accurate scene comprehen-
sion. The resolution-adaptive deformable attention mech-
anism adjusts the positions and quantities of query points
in deformable self-attention based on the dynamically as-
signed resolution. For each voxel Vi, its position in three-
dimensional space can be represented as p = (x, y, z).
We adjust these positions based on the resolution R(Vi),
allowing voxels with higher complexity to have a higher
query density. The adjusted query points are calculated as
p′ = p+ δR(Vi) + ∆p, where δ = 0.1 is a constant.

B.2. Hyperparameter for Training

We utilize 4 NVIDIA Tesla A100 GPUs to train the
DepthSSC model across 30 epochs, processing a batch size
of 4 images in each iteration. These RGB images are of
the resolution 1220×370. During training, we incorporate
a random horizontal flip for data augmentation. For opti-
mization, we employ the AdamW optimizer, initiating with
a learning rate of 1e-4 coupled with a weight decay of 1e-
4. By the time we reach the 5th epoch, we decrease the
learning rate by 10%. Both stage-1 and stage-2 are trained
separately for 24 epochs, using a learning rate of 2× 10−4.

C. Additional Ablation Studies
ST-GF Ablation Experiments. The ST-GF module com-
bines spatial transformation and graph structure features to
ensure accurate alignment of spatial information between
the depth map and voxel queries in 3D scene comple-
tion. Alternative alignment techniques, such as Iterative
Closest Point (ICP) [24], feature-based registration [11],
and regularization-based matching [17], can also be used.
Regularization-based matching minimizes a distance metric
between the source and target, while feature-based registra-

Ours(SemanticKITTI)
Alignment Method IoU ↑ mIoU ↑

ST-GF 45.97 14.59
ICP 44.28 (-1.69) 12.64(-1.95)
Feature-based Reg. 44.45(-1.52) 12.76(-1.83)
Regularization Matching 44.87(-1.10) 12.98(-1.61)

Table 1. Ablation study for ASAN in ST-GF module.

tion uses extracted feature points for matching. As shown
in Table 1, ST-GF outperforms other alignment methods,
demonstrating its effectiveness. However, any alignment
method improves the performance of the original Vox-
Former.

Ours(SemanticKITTI)
Distance Metric IoU ↑ mIoU ↑

Euclidean Distance 45.97 14.59
Cosine Similarity 45.46(-0.51) 13.25(-1.34)
Manhattan Distance 45.33(-0.64) 12.92(-1.67)

Table 2. Ablation study on connection strength computation using differ-
ent distance metrics.

Connection Strength Ablation Experiments. In the ST-
GF module, connection strength represents relationships or
similarities between nodes, influencing which relationships
are fused during graph convolution. We compare different
distance metrics for semantic scene completion (SSC). Ta-
ble 2 shows that Euclidean distance achieves the best per-
formance, as it accurately captures the actual distance and
relative positional relationships in 3D space. Cosine sim-
ilarity, focusing more on direction than magnitude, is less
suitable for this task. Manhattan distance considers spatial
aspects but does not account for the shortest distance be-
tween two points, leading to potential information loss or
inaccuracies.

Resolution-Adaptive Deformable Attention Ablation
Experiments. Resolution-adaptive deformable attention
addresses the varying geometric complexities in 3D data by
enabling finer voxel resolutions in complex regions. To val-
idate its effectiveness, we compared it against non-uniform
voxelization [6], dynamic kernel [4], and non-local opera-
tions [18]. These methods partially address geometric com-
plexity but have limitations. Table 4 presents the ablation
results. Non-uniform voxelization can cause data disconti-
nuities and biases. Dynamic kernel methods face alignment
issues with different kernel sizes and shapes. Non-local
operations, while capturing long-range dependencies, are
computationally intensive for 3D data and less effective at
local complexities. The results demonstrate that resolution-
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MonoScene [3] 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65 6.06
TPVFormer [8] 7.22 38.90 13.67 40.78 45.90 17.23 19.99 18.85 14.30 26.69 34.17 55.65 35.47 37.55 30.70 19.40 16.78 27.83
BEVDet [7] 4.39 30.31 0.23 32.36 34.47 12.97 10.34 10.36 6.26 8.93 23.65 52.27 24.61 26.06 22.31 15.04 15.10 19.38
OccFormer [25] 5.94 30.29 12.32 34.40 39.17 14.44 16.45 17.22 9.27 13.90 26.36 50.99 30.96 34.66 22.73 6.76 6.97 21.93
BEVFormer [15] 5.85 37.83 17.87 40.44 42.43 7.36 23.88 21.81 20.98 22.38 30.70 55.35 28.36 36.0 28.06 20.04 17.69 26.88
DepthSSC(Ours) 12.11 40.26 28.35 37.42 54.56 23.15 29.20 28.73 29.21 31.22 38.67 72.88 46.05 47.85 33.23 37.02 24.37 38.84

Table 3. 3D semantic occupancy prediction performance on the validation set of Occ3D-nuScenes [20].

Ours(SemanticKITTI)
Region-Adaptive Method IoU ↑ mIoU ↑

Resolution-Adaptive Deformable Attention 45.97 14.59
Non-Uniform Voxelization 40.61(-5.36) 10.63(-3.96)
Dynamic Kernel Methods 42.58(-3.39) 11.80(-2.79)
Non-Local Operations 41.47(-4.50) 11.39(-3.20)

Table 4. Ablation study on resolution-adaptive deformable attention.

adaptive deformable attention outperforms these methods,
capturing local geometric details more effectively.

D. Results on Occ3D

The results in Table 3 demonstrate the superiority of
our DepthSSC over several state-of-the-art methods on the
Occ3D-nuScenes validation set. DepthSSC achieves the
highest mIoU of 38.84, outperforming existing approaches
such as TPVFormer (27.83) and BEVFormer (26.88) by a
significant margin.

Specifically, ST-GF allows for more accurate spatial
alignment between voxel queries and depth maps, lead-
ing to enhanced object recognition in challenging cate-
gories such as vegetation (37.02) and manmade structures
(33.23). GAV further refines voxel resolution dynamically,
which is particularly beneficial in capturing fine details
in complex categories like bicycles (28.35) and pedestri-
ans (28.73). DepthSSC also excels in driveable surface
detection (72.88), indicating that the proposed fusion and
voxelization techniques are effective in both object-level
and scene-level predictions. The substantial improvements
across a range of categories, especially in highly dynamic or
small-scale objects, validate the robustness of our approach
in semantic scene completion tasks.
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