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Figure 1. Qualitative results on NightCity dataset [5]. It shows that our model generates more robust and temporal consistent results,

compared to the SOTA method. Best viewed in color.

1. Training Details

Loss function. Our main loss is standard pixel-wise
Cross-Entropy loss. Following common practice, two aux-
iliary losses are also computed: (1) we attach an auxil-
iary Fully Convolutional Networks (FCN) [2] head upon
the third-stage features to generate segmentation results at
1/8 resolution and apply Cross-Entropy loss to calculate an
auxiliary loss; (2) we use an auxiliary MLP head upon the
multi-scale features after the Multi-scale Mixer to optimize
per-frame learning. We train our model by optimizing the
main loss and two auxiliary losses jointly using a weighted
sum, which is set to 1.0, 0.4, and 0.4, respectively:

2. Additional Ablation Study

Selection of Temporal Decoder. Besides, we also show
the results of different selections of the Temporal Decoder
module in Table 1 using MiT-BO backbone on the low-

Table 1. Ablation study of multiple selections of Temporal De-
coder

Temporal Decoder ‘ mIOU?T ‘ mVCg 1 ‘ mVCyg T

Concatenation 23.3 83.8 77.7
Temporal block [1] 254 84.9 79.2
Focal block (ours) [6] 28.2 87.0 82.1

light VSPW [3] dataset. We start by concatenating features
from all frames and using a simple MLP decoder to predict.
When replacing it with a more sophisticated decoder, such
as a Temporal block in Fiery [1] or a Focal block in Focal
Transformer [6], results are better.

3. Additional Qualitative Results

We visualize segmentation predictions on several video
frames from the NightCity [5] dataset to demonstrate the ro-
bustness of our proposed model in real-world scenarios, as
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Figure 2. Performance vs. computational cost on the low-light
VSPW dataset. The circle areas are proportional to the model pa-
rameter size.

shown in Figure. 1. We compare the qualitative results of
our method with the baseline CFFM [4] using its default
settings. In CFFM’s predictions, some small objects are
omitted, showing its struggle to recognize motions of small
regions. EVSNet generates more accurate boundaries and
captures the temporal motions, demonstrating the effective-
ness of EVSNet.

Compared with the difference in predictions of low-light
VSPW [3] between EVSNet and CFFM, EVSNet doesn’t
improve significantly. That is because (1) authors manu-
ally sample frames from the videos in the NightCity dataset,
leading to video frames being inconsistent and further af-
fecting the quality of event frames; (2) label annotations are
incomplete, e.g. fourth image in Figure. 1. The authors
failed to annotate all the poles in that image, but our model
detects and segments them.

4. Performance vs. computational cost

We additionally report the Performance vs. computa-
tional cost analysis. Fig. 2 shows the EVSNet improves the
SOTA performance by a large margin while slightly increas-
ing the model size. In specific, our model only increases
the GFLOPs by 14% (MiT-B0) and 28% (MiT-B1) than the
baseline (CFFM) and the parameter size is about 4 Mb more
than the baseline. Compared to slightly larger model size,
our model increases the mloU by 42% (MiT-B0) and 54%
(MiT-B1).
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