
Figure 6. The image on the right
is generated from the ControlNet
with a condition image on the
left. The condition is an image
of depth maps. The text prompt
is: Stormtrooper’s lecture.

Figure 7. The image on the right
is generated from the ControlNet
trained by FedAvg using the con-
dition image on the left. The text
prompt is: A skier poses for a
shot on the night time slopes.

A. Details about Experimental Settings in Sec-
tion 3.2

The diffusion model is stable diffusion V-1.5, ControlNet
is of version 1.1, and the autoencoder is ViT-Large-Patch14
CLIP model [30]. The input resolution is 512 × 512. The
NVIDIA A100 serves as the server’s device, and the NVIDIA
A4500 is used for clients’ devices. The fine-tuning batch
size is 4, and the model is trained for 2.5 × 103 iterations.
The number of clients is 50, with each client having 1000
training samples.

B. Alternative Distributed Training Paradigms

Federated learning (FL) is an alternative distributed train-
ing paradigm that preserving users privacy by training di-
rectly on client devices and aggregating local training up-
dates using a federated learning server. However, conven-
tional federated learning may not be suitable for fine-tuning
large ControlNet and diffusion models for three important
reasons. First, ControlNets and diffusion models are large
generative models, requiring formidable GPU resources on
client devices for local fine-tuning of pre-trained models.
Second, even if such GPU resources were available on client
devices, pre-trained ControlNet and diffusion models may
not be accessible as open-source due to commercial interests.
For example, neither OpenAI nor Midjourney has open-
sourced models like DALL·E 2 [31]. Finally, our experimen-
tal results presented here indicate that large ControlNet mod-
els fine-tuned with conventional federated averaging [25] as
the aggregation mechanism experienced severely degraded
performance compared to centralized training.

We follow the standard federated averaging scheme to
train the ControlNet with 50 clients, each having 1000 train-
ing samples. We train for a total of 100 rounds and aggre-
gate weights after every 250 local iterations. We evaluate
the performance on the MS-COCO [21] validation set. An
example of successful fine-tuning of a ControlNet [45] is
shown in Figure 6. We can generate a stormtrooper with
the same skeletons as in the left image of the depth maps.
However, as shown in Figure 7, even under the assumption
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Figure 8. The illustration of different inversion attacks.

that clients have powerful computing units and the weights
of the diffusion model are available, the ControlNet trained
by FedAvg [25] fails to learn the conditions. The generated
image does not match the condition at all; for example, the
posture of the person in the generated image differs from
that in the left condition images.

Although there may exist other aggregation scheme in fed-
erated learning and privacy-preserving methods in federated
learning, considering the existing challenges of training mod-
els on the clients and unavailability of the whole pre-trained
models, we leave the exploration of federated learning and
other distributed paradigms for future work. In this paper’s
scope, we focus on split learning.

C. Re-evaluating Potential Attacks
C.1. Potential Threats in Split Learning

C.1.1 Complementary about Threat Modeling

In our evaluation, we do not consider clients to be malicious.
In split learning, a client receives no data if using our pro-
posed framework. Therefore, malicious or colluding clients
cannot obtain data related to constructing private images
from other clients. However, malicious or colluding clients
may send crafted data to the server to launch attacks, such
as harming model utility. Such cases are detectable since the
model cannot generate correct results. As our focus is on
adversaries attempting to reconstruct private images, we do
not consider this threat.

C.1.2 Complementary about Attacking Methods

Several threats have been specifically proposed in split learn-
ing, ranging from the leakage of inputs to labels. The most
threatening attack is the inversion attack, which attempts
to reconstruct original private data based on the received



intermediate feature. We summarize typical inversion attack
methods proposed in previous literature in Figure 8. There
are two typical methods to do such an attack.

The first method is based on gradient descent. In this
type of attack, the adversary first constructs a randomized
input or an input with prior knowledge about the private
data. This input is then forwarded through a saved client
model on the server, and the reconstruction loss (usually
MSE loss) between the output from the randomized input
and the received intermediate features is minimized. After
several gradient descent iterations, the randomized input
optimizes to resemble the private data, which we consider
a reconstruction of private data. The attacker can launch
these attacks under a white-box setting [46] if it knows the
client model parameters; otherwise, it operates in a black-
box setting.

In the black-box setting, the first method is a query-based
attack [13] where the server sends specific designed inputs
to the clients and observes the corresponding intermediate
feature output. The second attack method, UnSplit [10],
does not require such queries. In the UnSplit attack method-
ology, a client model replica, denoted as M , is initialized
on the server along with a training sample represented as
x. The parameters of the guessed client model are desig-
nated as θ. Following the completion of the UnSplit at-
tack, the converged training samples are utilized as the de-
sired reconstruction of private data. During each iteration
of split learning, upon receiving intermediate features de-
noted as ĥ, the server feeds the training sample into the
guessed client model to obtain the output. Subsequently,
the server undergoes multiple inner iterations to update x
using ∇xLMSE(Mθ(x), ĥ), followed by several inner iter-
ations to update θ using ∇θLMSE(Mθ(x), ĥ). These steps
are iteratively performed until convergence is achieved.

The second type of inversion attack is based on training
an inverse network [13,23,43]. In this approach, the attacker
first trains an inverse network on a public dataset, which is
assumed to have a similar distribution as the private dataset.
The inverse network takes the intermediate features as inputs
and outputs the reconstructed private data. During the train-
ing of inverse networks, if it is under a white-box setting, the
attacker will directly use known client model weights to train
an inverse network. Otherwise, the attacker will first train an
estimated client model using known server model weights
on the same public dataset and then use this estimated client
model to train an inverse network.

Beyond leakage from the most threatening inversion at-
tack, other concerns exist about data privacy. Label leak-
age [20] assumes labels contain private information, allow-
ing the server to infer private labels by observing gradient
distributions returned to clients. However, this attack applies
only to binary classification in split learning. Inference at-
tacks [29] steal private data by sending attacker-designed

gradients to trick client models into returning features that
enable data reconstruction.

Another potential privacy risk involves text prompt leak-
age. As shown in Figure 1, fine-tuning ControlNet requires
the server to input text prompts into the encoders and de-
coders of both the diffusion model and control network. Con-
sequently, clients must upload their private text prompts to
the server. Although some may argue prompts are short, de-
scriptive texts with limited private content, the server could
still use known prompts to extract a training dataset [2].
Therefore, clients must keep prompts confidential from the
server.

C.2. Re-evaluating the Validity of Assumptions

C.2.1 The client model weights can be kept secretly.

In a white-box setting [46], the client model weights are
known. However, in real-world scenarios, the client does
not need to disclose the model weights to the server for split
learning to function. Even if an adversary manages to steal
the client model weights, clients can simply re-initialize the
model with different parameters. During the training process,
if the client model is trainable, its weights will change in each
iteration, making such an assumption invalid. The potential
vulnerability arises if the client model is pre-trained. Since
pre-trained weights are typically publicly available on the
Internet, such an attack could pose a threat.

C.2.2 The client can do split learning without providing
prior knowledge about private data to the server

In real-world split learning scenarios, the server only requires
the client model for training, operating without any knowl-
edge of the private data. In a black-box setting, it is assumed
that the adversary possesses prior knowledge about the pri-
vate data, enabling it to train an inverse network on public
data. For instance, Yao et al. [43] employed CelebA [22] as
the public dataset and LFWA [17] as the private dataset, both
containing human faces. However, in practical contexts, the
availability of a public dataset exhibiting such a correlation
with private datasets remains uncertain.

C.2.3 The client can reject the query request.

In a specific inversion attack, an adversary must query the
client model with samples supplied by the server [13]. How-
ever, in the standard split learning setup, clients do not need
to respond to any queries from the server; the split learning
still works. Therefore, to counter such an attack, clients can
simply reject all queries originating from the server. One
may argue that the server could construct these queries in a
manner resembling gradients, making them indistinguishable
to clients. However, with our structure that eliminates the
need for gradient back-sending, such concerns are mitigated.
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Figure 9. Privacy preserving: Higher distortion means better
privacy preservation. Randomly selected and non-cherry-picked
examples of reconstructed images by UnSplit attack.
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Figure 10. Privacy preserving: Higher distortion means better
privacy preservation. Randomly selected and non-cherry-picked
examples of reconstructed images by attacks optimizing MSE loss
under white-box setting.

In inference attacks [29], if the client model is trained
with gradients designed by the attacker, the resulting model
will inevitably experience a performance decline. Users can
easily detect this degradation in performance and cease using
the compromised server. Furthermore, our designed struc-
ture offers a straightforward defense against such attacks as
we do not need to train client models.

C.3. Re-evaluating the Effectiveness of Attacks

In summary, practical applications of split learning face
four threats. The first is a potential attack using gradient
descents in a white-box scenario, particularly if clients utilize
pre-trained weights. The second threat is an UnSplit attack,
while the third involves training inverse networks to infer
private data without prior knowledge of the data. The fourth
threat is the leakage of text prompts.

C.3.1 Metrics for Privacy-preserving Effectiveness

An honest-but-curious server aims to reconstruct private data
based on intermediate results. We evaluate the similarity
between reconstructed images and private images using peak

signal-to-noise ratio (PSNR) and the structural similarity
index measure (SSIM) [16]. Private images encompass users’
natural and conditional images. Both SSIM and PSNR utilize
image pixel values ranging from 0 to 255. PSNR assesses
image reconstruction quality, while SSIM gauges image
similarity. Lower SSIM and PSNR values signify decreased
image similarity, indicating improved privacy preservation.

C.3.2 Attack by Gradient Descents

In the original structure, since the server lacks knowledge
of the condition encoder weights, we resort to the UnSplit
attack method, following the procedure outlined in Un-
Split [10]. This attack involves updating the inputs based
on the mean squared error (MSE) loss between intermediate
results and outputs generated by randomly initialized inputs,
iterated over 100 loops. Subsequently, these inputs are used
to update the weights of the guessed client model, which
is also initialized randomly on the server, for another 100
loops. This process is repeated for a total of 100 outer loops.
We optimize the randomized model weights and inputs using
the Adam optimizer with a learning rate of 0.001. The loss
function utilized is L = LMSE + LL2 . For fine-tuning the
ControlNet, the dataset used is MS-COCO [21]. The suc-
cessful reconstruction of images using the UnSplit method
is illustrated in Figure 9.

In the gradient back-sending free structure, the server pos-
sesses knowledge of the weights of the pre-trained condition
encoder. Consequently, the server can launch attacks in a
white-box setting. For each attack, we conduct 1000 itera-
tions using the Adam optimizer with a learning rate of 0.001
and MSE as the loss function. Regarding the reconstruction
of the original image with the output of the SD encoder block
1, the PSNR is 3.39, and the SSIM is 0.12. For reconstructing
the condition image, the PSNR is 5.95, and the SSIM is only
0.002. As depicted in Figure 10, the reconstructed images
are far from recognizable. This ineffectiveness is attributed
to the pre-trained autoencoder’s complex model structure,
which incorporates dropout layers and batch normalization
layers. Between the two runs, even with identical inputs,
variations in outputs occur due to dropout layers. In dropout
layers, the operation of zeroing elements also nullifies the
gradient, making methods relying on gradient descent inef-
fective. Given the ineffectiveness of the white-box setting,
we do not need to test the black-box setting Unsplit attack.

C.3.3 Attack using Inverse Networks

For this attack, we examine two aspects: reconstructing the
original image and the condition image. Since the server
knows the diffusion model, it can directly use it to train an
inverse network. The key question is how similar private
and public datasets are. We choose MS-COCO as the public
dataset and CelebA [22] and ImageNet [4] as the private



Table 4. The inverse networks for inversion attacks have two types: Type 1 reconstructs the original image; Type 2 reconstructs the condition
image. Type 1&2 denotes layers used in both structures. Padding size is 1 and kernel size is 3.

Input Operator Stride #Out Structure Activation

642 × 320 Conv2d 1 320 Type 1 SiLU
642 × 320 Conv2d, 1 256 Type 1 SiLU
642 × 256 Upsample 2 96 Type 1 SiLU

642 × 4 Upsample 2 96 Type 2 SiLU

1282 × 96 Conv2d 1 96 Type 1&2 SiLU
1282 × 96 Upsample 2 32 Type 1&2 SiLU
2562 × 32 Conv2d 1 32 Type 1&2 SiLU
2562 × 32 Upsample 2 16 Type 1&2 SiLU
5122 × 16 Conv2d 1 16 Type 1&2 SiLU
5122 × 16 Conv2d 1 3 Type 1&2 Sigmoid

Original Images Reconstruction

CelebA CelebAImageNet ImageNet

Figure 11. Privacy preserving: Higher distortion means better
privacy preservation. Randomly selected and non-cherry-picked ex-
amples of reconstructed images from the outputs of the SD Encoder
Block 1 using an inverse network.

datasets. MS-COCO and ImageNet contain images of var-
ious categories, while CelebA comprises over 200K faces
from more than 10K celebrities.

The inverse network is trained on the public dataset and
then evaluated on the private dataset. We use the AdamW
optimizer with a learning rate of 1× 10−5, a batch size of
8, and train it for 7.5× 104 iterations. The structure of the
inverse network is shown in Table 4. As illustrated in Fig-
ure 11, this attack is ineffective on both datasets. For CelebA,
the PSNR is 5.87 and SSIM is 0.73, while for ImageNet, the
PSNR is 6.56 and SSIM is 0.71. The reconstruction results
are barely recognizable as the original private images.

Secondly, for the reconstruction of the condition image,
if we employ our proposed structure, the server can directly
train the inverse network. However, in the original struc-
ture, the server uses its model weights to train an estimated
client model on the public dataset and then trains the inverse
network. Unfortunately, this attack is effective for both struc-
tures with condition images. We will present the results and
defense mechanisms in the following sections.

C.4. Summary

We summarize potential split learning attacks in Table 5
and their effectiveness. The remaining effective method is
inverse network-based attacks for reconstructing condition
images. Another valid threat is text prompt leakage. Thus,
in this paper, we emphasize defending against these two
threats.

D. Details about Experimental Settings in Sec-
tion 5

Execution Environment. Our experiments are conducted
on a server with A100 GPUs. We use NVIDIA A4500 GPUs
as the client devices.

Dataset. The MS-COCO dataset contains over 120K
images with proper prompts. The model is fine-tuned over
MS-COCO for 25000 iterations with a batch size of 4. The
remaining settings is the same as default implementation
of ControlNet [45] where we use AdamW optimizer with
learning rate of 1× 10−5. The noise coefficient λt is 0. We
use the MS-COCO validation set with over 5000 images to
evaluate the quality of generated images.

Other Settings. We have 50 clients in total and each
has 1000 training samples. The number of clients will effect
efficiency and scalability but will not effect image generation
performance or privacy-preserving ability. Since the main
focus of this paper is on the latter two aspects, we do not
particularly study other settings. The resolution of the input
and generate images is 512× 512. The images are generated
with the same random seed. The settings for evaluating
privacy against reconstructing private data is the same as in
Appendix C.



Table 5. Summary of existing attacks in split learning, assessing validity and effectiveness in the diffusion model scenario, using ✓ for
successful data reconstruction and × otherwise; − denotes N/A.

Original structure Our structure

Valid? Raw image Condition image Valid? Raw image Condition image

Gradient descent
White-box ✓ × − ✓ × ×

Query-based × − − × − −
Black-box ✓ − × × − −

Inverse network
White-box ✓ × − ✓ × ✓
Black-box ✓ − ✓ × − −

Label leakage − Invalid: only applicable to binary image classification.

Inference attack − Invalid: detectable as the model cannot generate the correct results.

Text prompt leakage − The assumption is valid.

(a) Canny (b) Sribble (c) Segmentation

Figure 12. Examples of different conditions.

E. Examples of Different Conditions

Figure 13 shows the examples of three different condi-
tions: canny, segmentation, and scribble, studied in the paper.

F. More Details about Implementation

For our and other privacy-preserving methods, we im-
plement them with our designed gradient sending-back free
structure. For (ϵ,∆)-LDP mechanism, ∆ = 1× 10−4 and
we calculate that α ≈ 0.16.

G. Hyperparameter Tuning for Our Privacy-
Preserving Methods

Before we choose the k and beta0 for our methods, we
try to use different values and compare their performance
regarding the quality of image generation. In Remark 4.2,
we can set different privacy budgets with proper k and β0.
In Figure 13, we change privacy budgets by setting different
scheduling parameters k and β0 respectively. In the default
setting of our method, the privacy budget is 8. We try the
other two cases of setting privacy budgets as 0.3 and 2. As
shown in Figure 13, our method can still generate images of
good quality. However, for the baseline methods, they fail to

(a) k, ϵs = 2 (b) k, ϵs = 0.3 (c) β0, ϵs = 2 (d) β0, ϵs = 0.3

Figure 13. Randomly selected and non-cherry-picked examples
of generated images varying privacy budget with different k and
β0 in our method (Ours++). k and β0 indicate that the privacy
budgets change by altering only k or β0 respectively compared to
the default settings.

generate good images and protect privacy when they use the
same privacy budgets of 0.3 and 2.

H. More Visualization of Image Generation

Figure 15 and Figure 16 show more visualization result of
image generation when different privacy-preserving methods
are applied.

I. More Visualization of Reconstruction

Figure 17 show more visualization results of recon-
structed images by attacks using inverse networks, where
different privacy-preserving methods are applied.

J. Discussion

In this paper, we resolve the question of how we can train
ControlNet and diffusion models while keeping users’ data
privacy. Besides the aspect of preserving privacy, there are
other issues worth studying in production level split learning
with ControlNet and stable diffusion. In this paper, we focus
on ControlNet and stable diffusion while in future work,
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Figure 14. Image generation: Images of higher quality means better. Randomly selected and non-cherry-picked examples of generated
images with the given condition of Segmentation under different methods. The text prompt is: a motorcycle.
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Figure 15. Image generation: Images of higher quality means better. Randomly selected and non-cherry-picked examples of generated
images with the given condition of Canny under different methods. The text prompt is: cute toys for kids.

(a) Condition (b) Centralized (c) SL (d) Ours (e) Ours+t (f) Ours+c (g) Ours++ (h) LDP rr
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Figure 16. Image generation: Images of higher quality means better. Randomly selected and non-cherry-picked examples of generated
images with the given condition of Segmentation under different methods. The text prompt is: dinner with food in blue.

we hope we can extend our methods to other fine-tuning
methods for diffusion models such as T2I-Adapters etc.

Another challenging question is how we can keep users’
data privacy during the inference stage after deploying
trained ControlNet and diffusion models. The inference

process is different from the training. A trivial solution is
to run the inference completely on the edge device, which
needs about 7.5GB of memory. The memory requirement is
much less than that of training, which is feasible. However,
maybe not all clients have enough memory. It is a challenge
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Figure 17. Privacy preserving: Higher distortion means better
privacy preservation. Randomly selected and non-cherry-picked
examples of reconstructed condition images by inverse network
based attacks when fine-tuning the ControlNet with condition canny.
The private dataset is CelebA.

that how we can still keep user data privacy if we deploy a
ControlNet across the clients and the server. From related
work, we can see large efforts are being put into privacy-
preserving inference in split learning. It is worth studying
whether these methods are helpful during the inference stage.

In this paper, the target is towards privacy-preserving
split learning with ControlNet and diffusion model. In a
broader research topic, one question is how we can safely
do split learning. In such a case, we may not assume every
client is honest, which means some clients are malicious
and not sending the correct intermediate features. To harm
the interests of other clients, some clients may do backdoor
attacks or adversarial attacks, diminishing the utility of the
fine-tuned ControlNet and diffusion model.

In our experiments, we deploy split learning with 50
clients. We can increase the number of clients if we want,
but since Ts is much larger than Tc, the whole training time
is the same. Therefore, we do not increase the number. On
the production level, it is possible that there are more than
50 clients. With our methods, we can still train ControlNet
with split learning over them while preserving data privacy.
A minor issue is that since the clients only need to do infer-
ence, they may send intermediate features of large amounts
continuously and simultaneously. It is worth studying how
the server deals with a large scale of requests simultaneously.
We can expand the client number to hundreds or thousands
to evaluate the scalability.
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